精英家教网 > 高中数学 > 题目详情
9.设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m?α,显然能得到m∥β,这样即可找出正确选项.

解答 解:m?α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;
α∥β,m?α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;
∴“m∥β”是“α∥β”的必要不充分条件.
故选B.

点评 考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设随机变量X~N(10,1),P(9≤x<10)=a,其中a=$\int_{\frac{1}{9}}^{\frac{1}{4}}{\frac{1}{{\sqrt{x}}}dx}$,则P(X≥11)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值为4,则a=(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$,n=$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$.现有如下命题:
①对于任意不相等的实数x1、x2,都有m>0;
②对于任意的a及任意不相等的实数x1、x2,都有n>0;
③对于任意的a,存在不相等的实数x1、x2,使得m=n;
④对于任意的a,存在不相等的实数x1、x2,使得m=-n.
其中的真命题有①④(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanα=-2,tan(α+β)=$\frac{1}{7}$,则tanβ的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合M={-1,1},N={-2,1,0}则M∩N=(  )
A.{0.-1}B.{0}C.{1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2$\sqrt{3}$,则 AD=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为2$\sqrt{3}$,则ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=8.

查看答案和解析>>

同步练习册答案