精英家教网 > 高中数学 > 题目详情
1.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2$\sqrt{3}$,则 AD=3.

分析 连接OC,则OC⊥DE,可得$\frac{OC}{AD}=\frac{OE}{AE}$,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.

解答 解:连接OC,则OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴$\frac{OC}{AD}=\frac{OE}{AE}$
由切割线定理可得CE2=BE•AE,
∴12=BE•(BE+4),
∴BE=2,
∴OE=4,
∴$\frac{2}{AD}=\frac{4}{6}$,
∴AD=3
故答案为:3.

点评 本题考查切割线定理,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.解不等式:-1<$\frac{-2λ+10}{\sqrt{{λ}^{2}+4}•\sqrt{29}}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x+sin2xB.y=x2-cosxC.y=2x+$\frac{1}{{2}^{x}}$D.y=x2+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,“$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|”是“$\overrightarrow{a}$$∥\overrightarrow{b}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x∈R,则“x>1“是“x3>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列双曲线中,渐近线方程为y=±2x的是(  )
A.x2-$\frac{y^2}{4}$=1B.$\frac{x^2}{4}$-y2=1C.x2-$\frac{y^2}{2}$=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{3x}{x+3}$,数列{an}满足an=f(an-1)(n>1,n∈N*,a1≠0)
(1)求证:{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若a1=$\frac{1}{4}$,求a40的值.

查看答案和解析>>

同步练习册答案