精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{{e}^{x}}{1+x}$.
(1)求函数f(x)的单调区间;
(2)当x∈[0,1)时,判断f(x)与f(-x)的大小.

分析 (1)求出函数的导数,从而求出函数的单调区间即可;(2)作差,构造函数g(x),通过讨论g(x)的单调性,求出g(x)≤0,从而比较出其大小即可.

解答 解:(1)∵f′(x)=$\frac{{xe}^{x}}{{(1+x)}^{2}}$,
当x>0时,f′(x)>0,当x<0且x≠-1时,f′(x)<0,
∴f(x)在(-∞,-1),(-1,0)递减,在(0,+∞)递增;
(2)∵f(x)-f(-x)=$\frac{(1-x{)e}^{x}-(1+x{)e}^{-x}}{1{-x}^{2}}$,
设g(x)=(1-x)ex-(1+x)e-x=(1-x)ex-$\frac{1+x}{{e}^{x}}$,
则g′(x)=$\frac{x(1{-e}^{2x})}{{e}^{x}}$,
∵当x∈(0,1)时,g′(x)<0,
∴g(x)在[0,1)递减,
∴g(x)≤g(0)=0,
∴f(x)-f(-x)≤0,
即f(x)≤f(-x),(当且仅当x=0时“=”成立).

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.幂函数y=f(x)经过点(5,$\sqrt{5}$),则f(x)是(  )
A.偶函数,且在(0,+∞)上是增函数
B.偶函数,且在(0,+∞)上是减函数
C.奇函数,且在(0,+∞)是减函数
D.非奇非偶函数,且在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆C:(x+2)2+y2=r2与抛物线D:y2=20x的准线交于A,B两点,且|AB|=8,则圆C的面积是(  )
A.B.C.16πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\sqrt{3}$x-y-1=0的倾斜角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;在五边形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.
(1)根据以上结论猜想在n边形A1A2A3…An中,有怎样的不等式成立.(不要求证明)
(2)数列{an},满足a1=1,an+1-an≤2,Sn为数列{an}的前n项和,试用(1)猜想的结论,证明不等式Sn≤(A1+A2+…An)($\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…+$\frac{1}{{A}_{n}}$)(n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一次解题比赛中,甲、乙两组各四名同学答对题目数如茎叶图所示.
(1)当X=8,求乙组同学答对题目数的平均数和方差;
(2)当X=9,用抽签的方法分别从甲、乙两组各选取一名同学,若这两名同学答对题目数的和为Y,求Y的分布列和数学期望.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α、β∈(0,π),sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$,则tanα=$\frac{4}{3}$,tanβ=-$\frac{63}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得3分,答错得-3分;选乙题答对得1分,答错得-1分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(  )
A.24B.36C.40D.44

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$
(1)当$0<a<\frac{1}{2}$时,讨论f(x)的单调性
(2)设g(x)=x2-2bx+4.当$a=\frac{1}{4}$时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.

查看答案和解析>>

同步练习册答案