精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$
(1)当$0<a<\frac{1}{2}$时,讨论f(x)的单调性
(2)设g(x)=x2-2bx+4.当$a=\frac{1}{4}$时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题等价于g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值$-\frac{1}{2}$,根据函数的单调性分别求出函数g(x)的最小值和f(x)的最小值,得到关于b的不等式,解出即可.

解答 解:(1)因为$f(x)=lnx-ax+\frac{1-a}{x}-1$
所以$f'(x)=\frac{1}{x}-a+\frac{a-1}{x^2}=-\frac{{a{x^2}-x+1-a}}{x^2},x∈(0,+∞)$
令f′(x)=0,解得:x=1或$\frac{1}{a}$-1,-------------------(2分)
当0<a<$\frac{1}{2}$时,$\frac{1}{a}-1>1>0$,x∈(0,1)时,此时f'(x)<0,函数f(x)单调递减;
$x∈(1,\frac{1}{a}-1)$时,此时f'(x)>0,函数f(x)单调递增;
$x∈(\frac{1}{a}-1,+∞)$时,此时f′(x)<0,函数f(x)单调递减:-------------------(5分)
(2)因为$a=\frac{1}{4}∈(0,\frac{1}{2})$,由(I)知,$\frac{1}{a}-1=3∉(0,2)$,
当x∈(0,1)时,f'(x)<0,函数f(x)单调递减;
当x∈(1,2)时,f'(x)>0,函数f(x)单调递增,
所以f(x)在(0,2)上的最小值为$f(1)=-\frac{1}{2}$
由于“对任意x1∈(0,2),存在x2∈[1,2],
使f(x1)≥g(x2)等价于g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值$-\frac{1}{2}$”(*)-------------------(8分)
又g(x)=(x-b)2+4-b2,x∈[1,2],
所以①当b<1时,因为[g(x)]min=g(1)=5-2b>0此时与(*)矛盾,
②当1≤b≤2时,因为${[g(x)]_{min}}=4-{b^2}≥0$同样与(*)矛盾,
③当b>2时,因为[g(x)]min=g(2)=8-4b,
且当b>2时,8-4b<0,解不等式$8-4b≤-\frac{1}{2}$,可得$b≥\frac{17}{8}$-------------------(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{e}^{x}}{1+x}$.
(1)求函数f(x)的单调区间;
(2)当x∈[0,1)时,判断f(x)与f(-x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将甲桶中的水缓慢注入空桶乙中,已知对任意的t∈[0,+∞),经过t分钟甲桶中剩余的水量为原来的ekt倍(k为常数,e为自然对数的底数),若经过5分钟乙桶中的水量与甲桶相等,经过m分钟乙桶中的水量是甲桶的7倍,则m的值为(  )
A.7B.8C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=exsinx,其中x∈R,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当$x∈[0,\frac{π}{2}]$时,f(x)≥kx,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$(a+1)x2-ax,a∈R.
(Ⅰ) 讨论f(x)的单调性;
(Ⅱ) 若f′(x)是f(x)的导函数,且不等式f′(x)≤xlnx恒成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y的取值如表所示:
x456
y867
如果y与x线性相关,且线性回归方程为$\hat y=\hat bx+2$,则$\hat b$的值为(  )
A.1B.$\frac{3}{2}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥P-ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC,E为AC中点,EF⊥AP,垂足为F.
(Ⅰ)求证:AP⊥FB;
(Ⅱ)求二面角A-FC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=$\frac{1}{2}$AD,E是线段AB的中点.
(1)求四棱锥P-ABCD的体积;
(2)试问线段PB上是否存在点F,使二面角C-DE-F的余弦值为$\frac{1}{4}$?若存在,确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=log2(x2+2x+a),g(x)=2x,对于任意的实数x1,总存在x2,使得f(x2)=g(x1),实数a的取值范围是(  )
A.a>2B.a≤2C.a>1D.a≤1

查看答案和解析>>

同步练习册答案