精英家教网 > 高中数学 > 题目详情
10.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任意两点P,Q,若OP⊥OQ,则乘积|OP|•|OQ|的最小值为$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

分析 题意可设点P(|OP|cosθ,|OP|sinθ),Q(|OQ|cos(θ±$\frac{π}{2}$,|OQ|sin(θ±$\frac{π}{2}$),由P、Q在椭圆上,即可得出结论.

解答 解:题意可设点P(|OP|cosθ,|OP|sinθ),Q(|OQ|cos(θ±$\frac{π}{2}$,|OQ|sin(θ±$\frac{π}{2}$),
由P、Q在椭圆上,得:$\frac{1}{|OP{|}^{2}}$=$\frac{co{s}^{2}θ}{{a}^{2}}$+$\frac{si{n}^{2}θ}{{b}^{2}}$,①
$\frac{1}{|OQ{|}^{2}}$=$\frac{si{n}^{2}θ}{{a}^{2}}$+$\frac{co{s}^{2}θ}{{b}^{2}}$,②
①+②,得 $\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$,
∴当|OP|=|OQ|=$\sqrt{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}$时,乘积|OP|•|OQ|最小值为$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.
故答案为:$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

点评 本题考查椭圆中两线段乘积的最小值的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.焦距为10,短轴上顶点坐标为(12,0),(-12,0)的椭圆标准方程是$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=x5+x4+2x3+3x2+4x+1,应用秦九韶算法计算x=2时的值时,v2的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若命题p:?x0∈R,x02+x0+1<0,则¬p为(  )
A.?x∈R,x2+x+1<0B.?x∈R,x2+x+1>0C.?x∈R,x2+x+1≥0D.?x∈R,x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.同时抛掷两枚骰子,向上点数之和为5的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{21}$C.$\frac{1}{18}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上是否存在关于直线l:y=2x-1对称的相异两点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图为某几何体的三视图,则该几体的体积为(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知S为数列{an}的前n项和,若an(4+cosnπ)=n(2-cosnπ),則S20=122.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=ln$\frac{3}{4}$,b=5lg3,c=3${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

同步练习册答案