精英家教网 > 高中数学 > 题目详情
6.将函数f(x)=cosx图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移$\frac{π}{6}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{0,\frac{aπ}{9}}]$与[2aπ,4π]上均单调递增,则实数a的取值范围为(  )
A.$[{\frac{13}{12},2})$B.$[{\frac{13}{12},\frac{3}{2}}]$C.$[{\frac{7}{6},2})$D.$[{\frac{7}{6},3}]$

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的单调性求得a的范围.

解答 解:将函数f(x)=cosx图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos$\frac{x}{2}$的图象;
然后向右平移$\frac{π}{6}$个单位后得到函数g(x)=cos$\frac{x-\frac{π}{6}}{2}$=cos($\frac{x}{2}$-$\frac{π}{12}$) 的图象,
若函数g(x)在区间$[{0,\frac{aπ}{9}}]$与[2aπ,4π]上均单调递增,则 0-$\frac{π}{12}$=-$\frac{π}{12}$,$\frac{1}{2}•\frac{aπ}{9}$-$\frac{π}{12}$≤0,且$\frac{2aπ}{2}$-$\frac{π}{12}$≥2kπ-π,$\frac{4π}{2}$-$\frac{π}{12}$≤2kπ,k∈Z.
求得$\frac{13}{12}$≤a≤$\frac{3}{2}$,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.${({2{x^2}-\frac{1}{x}})^6}$的展开式中常数项为(  )
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[-1,3]上随机取一个实数x,则x使不等式|x|≤2成立的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\frac{{x}^{2}}{2}$-alnx(a≠0).
(1)讨论f(x)的单调性和极值;
(2)证明:当a>0时,若f(x)存在零点,则f(x)在区间(1,$\sqrt{e}$]上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从混有3张假钞的10张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为(  )
A.$\frac{1}{8}$B.$\frac{2}{9}$C.$\frac{1}{15}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({2x+\frac{π}{6}})+sin({2x-\frac{π}{6}})+cos2x+1$.
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C,的对边分别为a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=(x2-3)ex,现给出下列结论:
①f(x)有极小值,但无最小值②f(x)有极大值,但无最大值
③若方程f(x)=b恰有一个实数根,则b>6e-3
④若方程f(x)=b恰有三个不同实数根,则0<b<6e-3
其中所有正确结论的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{1}{x}$-bx+1.
(Ⅰ)若2a-b=4,则当a>2时,讨论f(x)的单调性;
(Ⅱ)令a≥-4,b=-1,F(x)=f(x)-$\frac{5}{x}$,若存在x0∈[1,4],使得不等式F(x0)≥2成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案