| A. | $(-\frac{π}{2},0)$ | B. | $(-\frac{π}{6},\frac{π}{3})$ | C. | $(\frac{π}{3},\frac{5π}{6})$ | D. | $(\frac{π}{2},π)$ |
分析 利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,根据函数的最小正周期求解ω,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;
解答 解:函数$f(x)=\sqrt{3}sinωx-cosωx(ω>0)$
化解可得:f(x)=2sin(ωx-$\frac{π}{6}$)
∵最小正周期为π,即T=$\frac{2π}{ω}=π$,
∴ω=2.
则f(x)=2sin(2x-$\frac{π}{6}$)
由$\frac{π}{2}≤2x-\frac{π}{6}≤\frac{3π}{2}$可得$\frac{π}{3}≤x≤\frac{5π}{6}$.
∴f(x)的一个单调递减区间($\frac{π}{3}$,$\frac{5π}{6}$).
故选C.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用根据周期求解出解析式是解决本题的关键.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≤-1} | B. | {x|x≤1} | C. | {x|-1<x≤1} | D. | {x|1≤x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com