分析 通过图象可以看出振幅为2,可求周期为π,利用周期公式可得ω=2,由点($\frac{11π}{12}$,0)在函数图象上,可得:2sin(2×$\frac{11π}{12}$+φ)=0,解得:φ=kπ-$\frac{11π}{6}$,k∈Z,结合范围0<φ<$\frac{π}{2}$可求φ,从而求出函数解析式.
解答 解:由图象得:A=2,T=$\frac{2π}{ω}$=$\frac{11π}{12}-(-\frac{π}{12})$=π,可得:ω=2,
∵由点($\frac{11π}{12}$,0)在函数图象上,可得:2sin(2×$\frac{11π}{12}$+φ)=0;
∴2×$\frac{11π}{12}$+φ=kπ,k∈Z,解得:φ=kπ-$\frac{11π}{6}$,k∈Z,
∵0<φ<$\frac{π}{2}$
∴解得:φ=$\frac{π}{6}$.
∴函数解析式为:y=2sin(2x+$\frac{π}{6}$).
故答案为:y=2sin(2x+$\frac{π}{6}$).
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,注意条件0<φ<$\frac{π}{2}$的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com