精英家教网 > 高中数学 > 题目详情
2.若实数x,y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,则z=3x+y的取值范围是[2,8].

分析 根据题意画出约束条件表示的平面区域,根据图形得出直线z=3x+y过点B(0,2)时z取得最小值,过点A时z取得最大值即可.

解答 解:画出约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$表示的平面区域,如图所示;

当直线z=3x+y过点B(0,2)时,z取得最小值为2;
当直线z=3x+y过点A(2,2)时,z取得最大值为8;
所以z=3x+y的取值范围是[2,8].
故答案为:[2,8].

点评 本题主要考查了线性目标函数在线性约束条件下求最值的应用问题,解题的关键是明确z的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设两向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$满足$|\overrightarrow{e_1}|=2$,$|\overrightarrow{e_2}|=1$,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为60°,$\vec a=2$$\overrightarrow{e_1}$+$\overrightarrow{e_2}$$\vec b=\overrightarrow{e_1}+2\overrightarrow{e_2}$,则$\vec a$在$\vec b$上的投影为(  )
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{{5\sqrt{21}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=4,a4+a7=15. 
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lnx+$\frac{1}{2}$ax2-(a+1)x+1在x=1处取得极小值,则实数a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)满足f(log3x)=x-log3(x2).
(1)求函数f(x)的解析式;
(2)当n∈N*时,试比较f(n)与n3的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,点E为PD中点.
(1)求证:AB⊥PD;
(2)求证:CE∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足4an=an-1-3(n≥2且n∈N*),且a1=-$\frac{3}{4}$,设bn$+2=3lo{g}_{\frac{1}{4}}$(an+1),n∈N*,数列{cn}满足cn=(an+1)bn
(1)求证{an+1}是等比数列并求出数列{an}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)对于任意n∈N*,cn≤m2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=cosx(cosx-3)+sinx(sinx-3).
(1)若x∈[2π,3π],求f(x)的单调递增区间;
(2)若x∈($\frac{π}{2}$,$\frac{3π}{4}$)且f(x)=-1,求tan2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.同时掷两枚骰子,得到的点数和为6的概率是(  )
A.$\frac{5}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{5}{18}$

查看答案和解析>>

同步练习册答案