精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知函数
(Ⅰ)若曲线在点处的切线与直线平行,求的值;
(Ⅱ)记,且.求函数的单调递增区间.

(Ⅰ);(Ⅱ)当时,函数的递增区间是;当时,函数的递增区间是;当时,函数的递增区间是;当时,函数的递增区间是.

解析试题分析:(Ⅰ)先求导,由导数的几何意义可得在点的导数即为在此点处切线的斜率。从而可得的值。(Ⅱ)先求导整理可得,当时,,解导数大于0可得增区间;当时,导数等于0的两根为,注意对两根大小的讨论,同样解导数大于0可得增区间。
试题解析:(Ⅰ) = (),(),
因为曲线在点处的切线与直线平行,
,解得.
(Ⅱ)因为
(1)当时,.令解得
(2)
,解得.
(ⅰ)当时,
,及.
解得,或
(ⅱ)当时,
因为恒成立.
(ⅲ)当时,由,及.
解得,或.
综上所述,
时,函数的递增区间是
时,函数的递增区间是
时,函数的递增区间是
时,函数的递增区间是.
考点:1导数的几何意义;2用导数研究函数的单调性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线
(1)试求曲线在点处的切线方程;
(2)试求与直线平行的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)

(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数在点(1,1)处的切线方程;
(2)若在y轴的左侧,函数的图象恒在的导函数图象的上方,求k的取值范围;
(3)当k≤-l时,求函数在[k,l]上的最小值m。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的最小值;
(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1).求函数f(x)的单调区间及极值;
(2).若x1≠x2满足f(x1)=f(x2),求证:x1+x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

同步练习册答案