·ÖÎö £¨1£©ÓÉÔ²x2+y2=$\frac{2}{3}$ÓëÍÖÔ²CµÄËĸö¶¥µã¹¹³ÉµÄËıßÐÎÏàÇеõ½a£¬bµÄ¹ØÏµÊ½£¬½áºÏc=1¼°Òþº¬Ìõ¼þÇóµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±½ÓÇó³ö$\frac{1}{|MF|}$+$\frac{1}{|NF|}$µÄÖµ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè³öÖ±ÏßlµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³öM£¬NµÄºá×ø±êµÄºÍÓë»ý£¬´úÈë$\frac{1}{|MF|}$+$\frac{1}{|NF|}$ÕûÀíµÃ´ð°¸£®
½â´ð
£¨1£©½â£º¹ý£¨a£¬0£©Ó루0£¬b£©µÄÖ±Ïß·½³ÌΪ$\frac{x}{a}+\frac{y}{b}=1$
¼´bx+ay-ab=0£¬
ÓÉÔ²x2+y2=$\frac{2}{3}$ÓëÖ±Ïßbx+ay-ab=0ÏàÇУ¬µÃ$\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{6}}{3}$£¬
ÓÖc=1£¬a2=b2+c2£¬ÁªÁ¢¿ÉµÃa2=2£¬b2=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©Ö¤Ã÷£ºµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬MNËùÔÚÖ±Ïß·½³ÌΪx=1£¬´úÈëÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬¼´|MF|=|NF|=$\frac{\sqrt{2}}{2}$£¬
´Ëʱ$\frac{1}{|MF|}$+$\frac{1}{|NF|}$=2$\sqrt{2}$£»
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³ÌΪy=k£¨x-1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬¿ÉµÃ£¨1+2k2£©x2-4k2x+2k2-2=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=\frac{4{k}^{2}}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
ÓÖ|MF|=$\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}$£¬|NF|=$\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}$£¬
¡à$\frac{1}{|MF|}$+$\frac{1}{|NF|}$=$\frac{1}{\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}}+\frac{1}{\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}}$=$\frac{2\sqrt{2}-\frac{\sqrt{2}}{2}£¨{x}_{1}+{x}_{2}£©}{£¨\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}£©£¨\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}£©}$
=$\frac{2\sqrt{2}-\frac{\sqrt{2}}{2}•\frac{4{k}^{2}}{1+2{k}^{2}}}{2-\frac{4{k}^{2}}{1+2{k}^{2}}+\frac{1}{2}•\frac{2{k}^{2}-2}{1+2{k}^{2}}}$=$\frac{2\sqrt{2}£¨{k}^{2}+1£©}{{k}^{2}+1}=2\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÑµÁ·ÁËÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµÎÊÌâµÄ½â¾ö·½·¨£¬¿¼²éÁËÔËËãÄÜÁ¦£¬ÊôÖеµÌ⣬±¾Ìâ½â´ðÖÐÓõ½½¹°ë¾¶¹«Ê½£¬Ê¹Óôð°¸Ê±Òª×¢ÒâÑо¿Æäµ¼³öµÄ·½·¨£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{2}$ | B£® | -$\frac{3}{2}$ | C£® | ¡À$\frac{3}{2}$ | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com