12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¨1£¬0£©£¬¹ýµãFµÄÖ±Ïßl½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬Ô²x2+y2=$\frac{2}{3}$ÓëÍÖÔ²CµÄËĸö¶¥µã¹¹³ÉµÄËıßÐÎÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö¤Ã÷£º$\frac{1}{|MF|}$+$\frac{1}{|NF|}$Ϊ¶¨Öµ£¬²¢Çó³ö´Ë¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÔ²x2+y2=$\frac{2}{3}$ÓëÍÖÔ²CµÄËĸö¶¥µã¹¹³ÉµÄËıßÐÎÏàÇеõ½a£¬bµÄ¹ØÏµÊ½£¬½áºÏc=1¼°Òþº¬Ìõ¼þÇóµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±½ÓÇó³ö$\frac{1}{|MF|}$+$\frac{1}{|NF|}$µÄÖµ£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè³öÖ±ÏßlµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÇó³öM£¬NµÄºá×ø±êµÄºÍÓë»ý£¬´úÈë$\frac{1}{|MF|}$+$\frac{1}{|NF|}$ÕûÀíµÃ´ð°¸£®

½â´ð £¨1£©½â£º¹ý£¨a£¬0£©Ó루0£¬b£©µÄÖ±Ïß·½³ÌΪ$\frac{x}{a}+\frac{y}{b}=1$

¼´bx+ay-ab=0£¬
ÓÉÔ²x2+y2=$\frac{2}{3}$ÓëÖ±Ïßbx+ay-ab=0ÏàÇУ¬µÃ$\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{6}}{3}$£¬
ÓÖc=1£¬a2=b2+c2£¬ÁªÁ¢¿ÉµÃa2=2£¬b2=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©Ö¤Ã÷£ºµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬MNËùÔÚÖ±Ïß·½³ÌΪx=1£¬´úÈëÍÖÔ²$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
½âµÃy=$¡À\frac{\sqrt{2}}{2}$£¬¼´|MF|=|NF|=$\frac{\sqrt{2}}{2}$£¬
´Ëʱ$\frac{1}{|MF|}$+$\frac{1}{|NF|}$=2$\sqrt{2}$£»
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³ÌΪy=k£¨x-1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬¿ÉµÃ£¨1+2k2£©x2-4k2x+2k2-2=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=\frac{4{k}^{2}}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
ÓÖ|MF|=$\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}$£¬|NF|=$\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}$£¬
¡à$\frac{1}{|MF|}$+$\frac{1}{|NF|}$=$\frac{1}{\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}}+\frac{1}{\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}}$=$\frac{2\sqrt{2}-\frac{\sqrt{2}}{2}£¨{x}_{1}+{x}_{2}£©}{£¨\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{1}£©£¨\sqrt{2}-\frac{\sqrt{2}}{2}{x}_{2}£©}$
=$\frac{2\sqrt{2}-\frac{\sqrt{2}}{2}•\frac{4{k}^{2}}{1+2{k}^{2}}}{2-\frac{4{k}^{2}}{1+2{k}^{2}}+\frac{1}{2}•\frac{2{k}^{2}-2}{1+2{k}^{2}}}$=$\frac{2\sqrt{2}£¨{k}^{2}+1£©}{{k}^{2}+1}=2\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÑµÁ·ÁËÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµÎÊÌâµÄ½â¾ö·½·¨£¬¿¼²éÁËÔËËãÄÜÁ¦£¬ÊôÖеµÌ⣬±¾Ìâ½â´ðÖÐÓõ½½¹°ë¾¶¹«Ê½£¬Ê¹Óôð°¸Ê±Òª×¢ÒâÑо¿Æäµ¼³öµÄ·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÈ«¼¯ÎªU=R£¬A={x|x2-x£¾0}£¬Ôò∁UA=[0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÇóÖ¤£ºsinA+sinB-cosAsin£¨A+B£©=2sinAsin2$\frac{A+B}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚ¡÷ABCÖУ¬¼ºÖªa£¬b£¬cÂú×㣨a+b+c£©£¨a-b+c£©=ac£¬Çó¡ÏBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®²»µÈʽx2-£¨a2+3a£©x+4£¾0¶ÔÒ»ÇÐx¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£¨-4£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a1£¼0£¬an+1£¾an£¬Ôò¹«±ÈµÄȡֵ·¶Î§ÊÇ£¨0£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬a+c=16£®ÆäÍâ½ÓÔ²µÄÖ±¾¶Îª12£¬ÇÒb+24cosB=24£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ$\frac{128}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑ֪ȫ¼¯U={x|x¡Ü5£¬x¡ÊN}£¬¼¯ºÏA={x£¾l£¬x¡ÊU}£¬Ôò∁UAµÈÓÚ{0£¬1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬|$\overrightarrow{a}$|=2£¬|$\overrightarrow{b}$|=3£¬ÇÒ3$\overrightarrow{a}$+2$\overrightarrow{b}$Óë¦Ë$\overrightarrow{a}$-$\overrightarrow{b}$´¹Ö±£¬ÔòʵÊý¦ËµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®-$\frac{3}{2}$C£®¡À$\frac{3}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸