【题目】双曲线经过点,两条渐近线的夹角为,直线交双曲线于、.
(1)求双曲线的方程;
(2)若过原点,为双曲线上异于、的一点,且直线、的斜率为、,证明:为定值;
(3)若过双曲线的右焦点,是否存在轴上的点,使得直线绕点无论怎样转动,都有成立?若存在,求出的坐标,若不存在,请说明理由.
【答案】(1)
(2)证明见解析
(3)存在,.
【解析】
(1)根据双曲线所过的点和渐近线的夹角可得关于的方程组,解该方程组后可得双曲线的标准方程.
(2)设,,,用三点的坐标表示,再利用点满足的方程化简前者可得所求的定值.
(3)设直线为,,,根据可得恒等式,联立直线方程和双曲线方程后利用韦达定理化简前者可得,从而得到所求的定点.
(1)双曲线的渐近线方程为,
因为两条渐近线的夹角为,故渐近线的倾斜角为或,
所以或.
又,故 或(无解),故,
所以双曲线.
(2)设,,,
故,,所以,
因为,所以即,
所以为定值.
(3)双曲线的右焦点为,
当直线的斜率存在时,设直线的方程为:,设,,
因为,所以,
整理得到①,
由可以得到,
因为直线与双曲线有两个不同的交点,
故且,
所以.
由题设有①对任意的总成立,
因,
所以①可转化为,
整理得到对任意的总成立,
故,故即所求的定点的坐标为.
当直线的斜率不存在时,则,此时或,
此时.
综上,定点的坐标为.
科目:高中数学 来源: 题型:
【题目】已知直线为椭圆的右准线,直线与轴的交点记为,过右焦点的直线与椭圆交于,两点.
(1)设点在直线上,且满足,若直线与线段交于点,求证:点为线段的中点;
(2)设点的坐标为,直线与直线交于点,试问是否为定值,若是,求出这个定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有,,三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,,,三人都恰好猜对了一半,则第一名是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据中国生态环境部公布的2017年、2018年长江流域水质情况监测数据,得到如下饼图:
则下列说法错误的是( )
A.2018年的水质情况好于2017年的水质情况
B.2018年与2017年相比较,Ⅰ、Ⅱ类水质的占比明显增加
C.2018年与2017年相比较,占比减小幅度最大的是Ⅳ类水质
D.2018年Ⅰ、Ⅱ类水质的占比超过
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,为椭圆的左右顶点,焦点到短轴端点的距离为2,且,为椭圆上异于的两点,直线的斜率等于直线斜率的2倍.
(1)求直线与直线的斜率乘积值;
(2)求证:直线过定点,并求出该定点;
(3)求三角形的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com