精英家教网 > 高中数学 > 题目详情

【题目】双曲线经过点,两条渐近线的夹角为,直线交双曲线于.

(1)求双曲线的方程;

(2)若过原点,为双曲线上异于的一点,且直线的斜率为,证明:为定值;

(3)若过双曲线的右焦点,是否存在轴上的点,使得直线绕点无论怎样转动,都有成立?若存在,求出的坐标,若不存在,请说明理由.

【答案】(1)

(2)证明见解析

(3)存在,.

【解析】

(1)根据双曲线所过的点和渐近线的夹角可得关于的方程组,解该方程组后可得双曲线的标准方程.

(2)设,用三点的坐标表示,再利用点满足的方程化简前者可得所求的定值.

(3)设直线,根据可得恒等式,联立直线方程和双曲线方程后利用韦达定理化简前者可得,从而得到所求的定点.

1)双曲线的渐近线方程为

因为两条渐近线的夹角为,故渐近线的倾斜角为

所以.

,故 (无解),故

所以双曲线.

2)设

,所以

因为,所以

所以为定值.

3)双曲线的右焦点为

当直线的斜率存在时,设直线的方程为:,设

因为,所以

整理得到①,

可以得到

因为直线与双曲线有两个不同的交点,

所以.

由题设有①对任意的总成立,

所以①可转化为

整理得到对任意的总成立,

,故即所求的定点的坐标为.

当直线的斜率不存在时,则,此时

此时.

综上,定点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,平面分别是的中点.

1证明:

2上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为椭圆的右准线,直线轴的交点记为,过右焦点的直线与椭圆交于两点.

1)设点在直线上,且满足,若直线与线段交于点,求证:点为线段的中点;

2)设点的坐标为,直线与直线交于点,试问是否为定值,若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,三人都恰好猜对了一半,则第一名是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据中国生态环境部公布的2017年、2018年长江流域水质情况监测数据,得到如下饼图:

则下列说法错误的是(

A.2018年的水质情况好于2017年的水质情况

B.2018年与2017年相比较,Ⅰ、Ⅱ类水质的占比明显增加

C.2018年与2017年相比较,占比减小幅度最大的是Ⅳ类水质

D.2018年Ⅰ、Ⅱ类水质的占比超过

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数.

(Ⅰ)设,求上的最大值.

(Ⅱ)设,若的极大值恒小于0,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:

根据该折线图可知,下列说法错误的是( )

A. 该超市2018年的12个月中的7月份的收益最高

B. 该超市2018年的12个月中的4月份的收益最低

C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益

D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆为椭圆的左右顶点,焦点到短轴端点的距离为2,且为椭圆上异于的两点,直线的斜率等于直线斜率的2.

1)求直线与直线的斜率乘积值;

2)求证:直线过定点,并求出该定点;

3)求三角形的面积的最大值.

查看答案和解析>>

同步练习册答案