精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后得到如图所示的几何体ABCD-A1C1D,且这个几何体的体积为
(1)求A1A的长;
(2)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长;如果不存在,请说明理由。
解:(1)∵·

∴AA1=4。
(2)在平面CC1D1D中作D1Q⊥C1D交CC1于Q,过Q作QP∥CB交BC1于点P,连接A1P,则A1P⊥C1D。 ∵A1D1⊥平面CC1D1D,C1D平面CC1D1D,
∴C1D⊥A1D1
而QP∥CB,CB∥A1D1
∴QP∥A1D1
又∵A1D1∩D1Q=D1
∴C1D⊥平面A1PQD1
又∵A1P平面A1PQD1
∴A1P⊥C1D
易知△D1C1Q∽△C1CD,

∴C1Q=1
又∵PQ∥BC,

∵四边形A1PQD1为直角梯形,且高
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案