精英家教网 > 高中数学 > 题目详情
已知tanα=2,求:
(1)
6sinα+cosα
3sinα-2cosα
的值;
(2)
sin3α+cosα
sin3α-sinα
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系,求得(1)
6sinα+cosα
3sinα-2cosα
和(2)
sin3α+cosα
sin3α-sinα
的值.
解答: 解:∵tanα=2,
(1)∴
6sinα+cosα
3sinα-2cosα
=
6tanα+1
3tanα-2
=
12+1
6-2
=
13
4

(2)∴
sin3α+cosα
sin3α-sinα
=
sin2α•tanα+1
sin2α•tanα-tanα
=
(1-cos2α)×2+1
(1-cos2α)×2-2
=
(1-
1
1+tan2α
)×2+1
(1-
1
1+tan2α
)×2-2
=
(1-
1
5
)×2+1
(1-
1
5
)×2-2
=-
13
2
点评:本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为R,对任意x∈R,有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,则f(2013)的值为(  )
A、-1
B、1
C、lg
2
3
D、lg
1
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+3的有两个零点x1,x2(x1≠x2),试问:
(1)m为何值时,该函数一个零点大于1,一个零点小于1
(2)m为何值时,该函数两个零点均满足x1∈(-3,-1),x2∈(-3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
参考公式:b=
n
i-1
(x1-
.
x)
(y1-
.
y)
n
i-1
(x1-
.
x
)2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x12-n
-2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,2an+1=(1+
1
n
2an
(1)求{an}的通项公式;
(2)令bn=an+1-
1
2
an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,f(x)=a-
2
2x+1
(x∈R)
(1)证明:不论a为何实数,f(x)均为增函数
(2)试确定a的值,使得f(-x)+f(x)=0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ln(x+1).
(1)当a=-
1
4
时,求函数f(x)的单调区间;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]<e 
13
4
(其中n∈N*
e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b的图象如图所示.
(1)求a与b的值;
(2)求x∈[2,4]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6π,且底面圆直径与母线长相等,求四棱柱的体积.

查看答案和解析>>

同步练习册答案