精英家教网 > 高中数学 > 题目详情
某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
参考公式:b=
n
i-1
(x1-
.
x)
(y1-
.
y)
n
i-1
(x1-
.
x
)2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x12-n
-2
x
考点:线性回归方程
专题:计算题,概率与统计
分析:(1)把所给的五组数据作为五个点的坐标描到直角坐标系中,得到散点图,
(2)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.
(3)把所给的广告费支出为10百万元时,代入线性回归方程,做出对应的销售额,这是一个预报值,与真实值之间有一个误差.
解答: 解:(1)把所给的五组数据作为五个点的坐标描到直角坐标系中,得到散点图,如图
(2)
.
x
=
2+4+5+6+8
5
=5,
.
y
=
30+40+50+60+70
5
=50,
5
i=1
xiyi=1390,
5
i=1
xi2=145,
∴b=7,a=15,
∴线性回归方程为y=7x+15.
(3)当x=10时,y=85.
即当广告费支出为10百万元时,销售额为85百万元.
点评:本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程
|cosx|
x
=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是(  )
A、tan(α+
π
4
)=
α+1
α-1
B、tan(α+
π
4
)=
α-1
α+1
C、tan(β+
π
4
)=
β+1
β-1
D、tan(β+
π
4
)=
β-1
β+1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列的公差为1,且a1+a2+a3+…+a99=99,则a3+a6+…+a99的值为(  )
A、0B、33C、66D、99

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log 
1
2
x≥-2且4×22x-9×2x+2>0,
(1)求x的取值的集合A;
(2)x∈A时,求函数f(x)=log2
x
2
•log 
2
x
2
的值域.
(3)g(t)=-t2+2at-a+
17
4
,在(1),(2)问的条件下,若任取x1,x2∈A,总存在t0∈(0,3),
使|f(x1)-f(x2)|≤g(t0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x
4
+
y
3
=1,M是l上一动点,过M作x轴、y轴的垂线,垂足分别为A、B,求在A、B连线上,且满足
AP
=2
PB
的点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

记关于x的不等式lg(x-6)<1的解集为P,不等式|x-a|≤1的解集为Q.若Q⊆P,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求:
(1)
6sinα+cosα
3sinα-2cosα
的值;
(2)
sin3α+cosα
sin3α-sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+bx+c的图象为曲线E.
(1)若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系;
(2)若函数f(x)可以在x=-1和x=3时取得极值,求此时a,b的值;
(3)在满足(2)的条件下,设x1,x2∈[-2,6],求证:|f(x1)-f(x2)|≤81恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=4cm,AC=3cm,角平分线AD=2cm,求此三角形面积.

查看答案和解析>>

同步练习册答案