【题目】作出下列函数的大致图像,并写出函数的单调区间和值域.
(1);(2);(3);(4).
【答案】(1)增区间:,值域:R;
(2)增区间:和,减区间:,值域:;
(3)减区间:和,增区间:和,值域:;
(4)减区间:和,增区间:和,值域:,大致图像见解析
【解析】
(1)由,由对称性即可作出图像,结合图像即可求出单调性、值域.
(2)将函数化为,利用幂函数的图像,由平移即可作出图像,结合图像即可求出单调性、值域.
(3)由,通过图像的翻折变化即可作出图像,结合图像即可求出单调性、值域.
(4)由,去绝对值,描点即可作出大致图像,结合图像即可求出单调性、值域.
(1)函数的图象如图所示:
函数在上为增函数,值域:.
(2),图象如图所示:
函数在和为增函数,在为减函数,
值域为:.
(3),图象如图所示:
函数在和为减函数,在和为增函数.
值域为:;
(4)
,
函数在和为减函数,在和为增函数,
值域为:.
科目:高中数学 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
经计算: , , , , , , ,其中分别为试验数据中的温度和死亡株数, .
(1)若用线性回归模型,求关于的回归方程(结果精确到);
(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.
(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据, ,……, ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=,=
(Ⅰ)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利z与x,y的关系为,根据(Ⅱ)的结果回答下列问题:
(Ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?
(Ⅱ)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省级示范高中高三年级对考试的评价指标中,有“难度系数”“区分度”和“综合”三个指标,其中,难度系数,区分度,综合指标.以下是高三年级 6 次考试的统计数据:
i | 1 | 2 | 3 | 4 | 5 | 6 |
难度系数 xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
区分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 计算相关系数,若,则认为与的相关性强;通过计算相关系数 ,能否认为与的相关性很强(结果保留两位小数)?
(II) 根据经验,当时,区分度与难度系数的相关性较强,从以上数据中剔除(0.7,0.8)以外的 值,即.
(i) 写出剩下 4 组数据的线性回归方程(保留两位小数);
(ii) 假设当时, 与的关系依从(i)中的回归方程,当 为何值时,综合指标的值最大?
参考数据:
参考公式:
相关系数
回归方程中斜率和截距的最小二乘估计公式为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)写出直线BC的一个方向向量;
(2)设平面α经过点A,且BC是α的法向量,M(x,y,z)是平面α内的任意一点,试写出x,y,z满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点.
(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP夹角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;
乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.
经预测,跳高1.65m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70m方可获得冠军呢?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com