精英家教网 > 高中数学 > 题目详情

如图所示,矩形ABCD中,E是BC上的点,AE⊥DE,BE=4,EC=1,则AB的长为________.

 

 

2

【解析】法一:∵∠B=90°,

∴∠BAE+∠AEB=90°.

∵AE⊥DE,

∴∠AEB+∠CED=90°.

∴∠BAE=∠CED,

∴Rt△ABE∽Rt△ECD,

,即,∴AB=2.

法二:过E作EF⊥AD于F.

由题知AF=BE=4,

DF=CE=1.

则EF2=AF·DF=4.

∴AB=EF=2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2016届云南省高一下学期期末考试数学试卷(解析版) 题型:选择题

经过两直线的交点,且平行于直线的直线方程是( ).

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2016届上海市高一下学期期末考试数学试卷(解析版) 题型:填空题

已知,则

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-2直线与圆的位置关系(解析版) 题型:选择题

如图所示,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G.给出下列三个结论:

①AD+AE=AB+BC+CA;

②AF·AG=AD·AE;

③△AFB∽△ADG.

其中正确结论的序号是(  )

A.①② B.②③ C.①③ D.①②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-1相似三角形判定及性质(解析版) 题型:选择题

如图,在矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△PBA,△APD,△CDP两两相似,则a,b间的关系一定满足(  )

A.a≥b B.a≥b C.a≥b D.a≥2b

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-1相似三角形判定及性质(解析版) 题型:选择题

如图,已知在?ABCD中,O1,O2,O3为对角线BD上三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于F,则AD∶FD等于(  )

A.19∶2 B.9∶1

C.8∶1 D.7∶1

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-4算法初步(解析版) 题型:解答题

在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-2用样本估计总体(解析版) 题型:填空题

某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-8曲线与方程(解析版) 题型:解答题

设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.

(1)求点P的轨迹方程;

(2)求证:△MNP的面积为一个定值,并求出这个定值.

 

查看答案和解析>>

同步练习册答案