设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.
![]()
(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.
(1)y=x2-1 (2)见解析
【解析】(1)设M(m,m2),N(n,n2),则依题意知,切线l1,l2的方程分别为y=2mx-m2,y=2nx-n2,则A(
,0),B(
,0).
设P(x,y),由
,得
①
因为|AB|=1,所以|n-m|=2,
即(m+n)2-4mn=4,将①代入上式,得
y=x2-1.
∴点P的轨迹方程为y=x2-1.
(2)证明:设直线MN的方程为y=kx+b(b>0).
联立方程![]()
消去y,得x2-kx-b=0.
所以m+n=k,mn=-b.②
点P到直线MN的距离
d=
,
|MN|=|m-n|,
∴S△MNP=
d·|MN|
=
|k(
)-mn+b|·|m-n|
=
·(m-n)2·|m-n|=2.
即△MNP的面积为定值2.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-1相似三角形判定及性质(解析版) 题型:填空题
如图所示,矩形ABCD中,E是BC上的点,AE⊥DE,BE=4,EC=1,则AB的长为________.
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-1随机抽样(解析版) 题型:解答题
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.
| 第一批次 | 第二批次 | 第三批次 |
女教职工 | 196 | x | y |
男教职工 | 204 | 156 | z |
(1)求x的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:填空题
设P为双曲线x2-
=1右支上的一点,F1、F2是该双曲线的左、右焦点,若|PF1|∶|PF2|=3∶2,则∠F1PF2的大小为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:选择题
若椭圆
+
=1与双曲线
-
=1(m,n,p,q均为正数)有共同的焦点F1,F2,P是两曲线的一个公共点,则
·
=( )
A.p2-m2 B.p-m C.m-p D.m2-p2
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-7抛物线(解析版) 题型:解答题
如图,等边三角形OAB的边长为8
,且其三个顶点均在抛物线E:x2=2py(p>0)上.
![]()
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-6双曲线(解析版) 题型:填空题
已知双曲线
-
=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F2作与x轴垂直的直线与双曲线一个交点为P,且∠PF1F2=
,则双曲线的渐近线方程为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:选择题
若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点M(a,b)向圆所作的切线长的最小值是( )
A.2 B.3 C.4 D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com