精英家教网 > 高中数学 > 题目详情
3.根据下列五个点(195,2),(197,3),(200,6),(203,8),(205,m),所求得的线性回归方程$\stackrel{∧}{y}$=0.8x-154,则实数m的值为(  )
A.9B.10C.11D.12

分析 计算$\overline{x}$,代入回归方程求出$\overline{y}$,即可列方程解出m.

解答 解:$\overline{x}$=$\frac{195+197+200+203+205}{5}$=200,
∴$\overline{y}$=0.8×200-154=6.
∴$\frac{2+3+6+8+m}{5}=6$,解得m=11.
故选C.

点评 本题考查了线性回归方程经过样本中心的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若1≤x≤4,3≤y≤6,则$\frac{x}{y}$的取值范围是(  )
A.$[\frac{1}{3},\frac{2}{3}]$B.$[\frac{1}{6},\frac{4}{3}]$C.$[\frac{1}{3},\frac{4}{3}]$D.$[\frac{2}{3},\frac{4}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax3+bx+c(a>0)为奇函数,其图象在点(1,f(1))处的切线与直线x-3y-1=0垂直,导函数f′(x)的最小值为-6,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.100件产品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期
温差
12月1日12月2日12月3日12月4日12月5日
x(℃)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性方程是可靠地,试问(2)中所得到的线性方程是否可靠?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班主任对班级51名同学进行了作业量多少的调查,结合数据建立了一个2×2列联表:
认为作业多认为作业不多总计
喜欢玩电脑游戏181230
不喜欢玩电脑游戏51621
总计232851
(可能用到的公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}n_{+1}n_{+2}}$,可能用到的数据:P(X2≥6.635)=0.01,P(X2≥3.841)=0.05)参照以上公式和数据,得到的正确结论是(  )
A.有95%的把握认为喜欢玩电脑游戏与认为作业多少有关
B.有95%的把握认为喜欢玩电脑游戏与认为作业多少无关
C.有99%的把握认为喜欢玩电脑游戏与认为作业多少有关
D.有99%的把握认为喜欢玩电脑游戏与认为作业多少无关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在△ABC中,|AB|=4,点E为AB的中点,点D为线段AB垂直平分线上的一点,且|DE|=3,固定边AB,在平面ABD内移动顶点C,使得△ABC的内切圆始终与AB切于线段BE的中点,且C、D在直线AB的同侧,在移动过程中,当|CA|+|CD|取得最小值时,点C到直线DE的距离为$2\sqrt{15}-6$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,问:
(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?
(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?

查看答案和解析>>

同步练习册答案