精英家教网 > 高中数学 > 题目详情
8.高斯函数f(x)=[x]的函数值表示不超过x的最大整数,如[-2.3]=-3,[1.2]=1.设函数g(x)=x-f(x),函数u(x)={sinπx},则下列说法正确的是(  )
A.函数g(x)与u(x)的值域相同B.函数g(x)与u(x)的最小正周期相同
C.函数g(x)与u(x)的单调区间相同D.函数g(x)与u(x)奇偶性相同

分析 由题意,函数f(x)=[x]的函数值表示不超过x的最大整数,这个整数必须是小于等于x的最大整数,g(x)=x-f(x),可得0≤g(x)<1,函数u(x)={sinπx}={1,0,-1}.可得答案.

解答 解:由题意,函数f(x)=[x]的函数值表示不超过x的最大整数,这个整数必须是小于等于x的最大整数,函数f(x)=x-[x],则f(-x)=-x-[-x]
例如f(3.5)=3.5-[3.5]=3.5-3=0.5,而f(-3.5)=-3.5-[-3.5]=-3.5+4=0.5=f(3.5),则函数是偶函数;
g(x+1)=x+1-[x+1]=g(x)=x-[x];∴g(x+1)=g(x).是周期T=1的函数.∴0≤g(x)<1,
函数u(x)={sinπx}={1,0,-1},是奇函数,
综上分析,可得函数g(x)与u(x)的单调区间相同,
故选C.

点评 本题主要考查了对新定义的充分理解和认识,求解函数的值域问题,已知“函数f(x)=[x]的函数值表示不超过x的最大整数”的含义是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(3,4),则向量$\overrightarrow{CB}$=(  )
A.(-4,-6)B.(4,6)C.(-2,-2)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题$p:?x∈R,sinxcos({x-\frac{π}{6}})-cos({\frac{2π}{3}-x})cosx<\frac{m}{2}$;命题q:函数f(x)=x2-mx+3在(-1,1)上仅有1个零点.
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的方程lnx+2=(a+1)x无解,则数实a的取值范围为(e-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题p:方程$\frac{x^2}{m-5}-\frac{y^2}{m+3}=1$表示双曲线的充要条件是-3<m<5;
命题q:存在x0∈R,使得sinx0-cosx0=2,则(  )
A.命题“p或q”是假命题B.命题“p且q”是真命题
C.命题“非q”是假命题D.命题“p且‘非q’”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在一个口袋中装5个白球和3个黑球,这些球除颜色外完全相同,从中摸出1个球,则摸到黑球的概率是(  )
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sinx在区间(0,10π)上可找到n个不同数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD.
(1)求证:平面PAB⊥平面PDC
(2)在线段AB上是否存在一点G,使得二面角C-PD-G的余弦值为$\frac{1}{3}$.若存在,求$\frac{AG}{AB}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{1}{3}$)-1+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

查看答案和解析>>

同步练习册答案