精英家教网 > 高中数学 > 题目详情
(2006•崇文区一模)已知一次函数f(x)=ax-2
(I)当a=3时,解不等式|f(x)|<4;
(II)解关于x的不等式|f(x)|<4;
(III)若不等式|f(x)|≤3对任意x∈(0,1]恒成立,求实数a的取值范围.
分析:(I)a=3时,f(x)=3x-2,然后代入|f(x)|<4,去绝对值后即可求出x的取值范围;
(II)先去绝对值,然后讨论a的符号,分别求出相应的解集即可;
(III)将若不等式|ax-2|≤3对任意x∈(0,1]恒成立,转化成-3≤ax-2≤3对任意x∈(0,1]恒成立,然后根据一次函数的单调性即可求出a的取值范围.
解答:解:(I)∵a=3时,f(x)=3x-2
|f(x)|<4?|3x-2|<4?-4<3x-2<4?-2<3x<6?-
2
3
<x<2

∴不等式的解集为{x|-
2
3
<x<2}
(6分)
(II)∵|ax-2|<4
∴-4<ax-2<4即-2<ax<6
当a>0时,不等式|f(x)|<4的解集为{x|-
2
a
<x<
6
a
}
当a<0时,不等式|f(x)|<4的解集为{x|-
2
a
>x>
6
a
}
当a=0时,不等式|f(x)|<4的解集为R.
(III)若不等式|ax-2|≤3对任意x∈(0,1]恒成立
即-3≤ax-2≤3对任意x∈(0,1]恒成立
即-3≤a-2≤3
∴-1≤a≤5
点评:本题主要考查了函数恒成立,以及绝对值不等式的求解,同时考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•崇文区一模)如果复数
1+bi
1+i
(b∈R)的实部和虚部互为相反数,则b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)已知直线m、n及平面α、β,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)如图,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,点E是棱BC的中点,AB=BC=AA′
(I)求证直线CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大小;
(III)求直线CA′与平面BB′C′C所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)某足球赛事中甲乙两中球队进入决赛,但乙队明显处于弱势,乙队为争取胜利决定采取这样的战术:顽强防守,0:0逼平甲队,进入点球大战.现规定:点球大战中每队各出5名队员,且每名队员都踢一球,假设在点球大战中双方每名运动员进球概率均为
34
.求:
(I)乙队踢进4个球的概率有多大?
(II)5个点球过后是4:4或5:5平局的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区一模)已知f(x)=ax3+x2+cx是定义在R上的函数,f(x)在[-1,0]和[4,5]上是减函数,在[0,2]上是增函数.
(I)求c的值;
(II)求a的取值范围;
(III)在函数f(x)的图象上是否存在一点M(x0,y0),使得曲线y=f(x)在点M处的切线的斜率为3,若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案