分析 根据圆的性质,得圆心在直线2ax-by+2=0上,解得b=1-a,代入式子a•b并利用二次函数的图象与性质,即可算出a•b的取值范围.
解答 解:∵直线2ax-by+2=0(a、b∈R)始终平分x2+y2+2x-4y+1=0的周长,
∴圆心(-1,2)在直线2ax-by+2=0上,可得-2a-2b+2=0
解得b=1-a
∴a•b=a(1-a)=-(a-$\frac{1}{2}$)2+$\frac{1}{4}$≤$\frac{1}{4}$,当且仅当a=$\frac{1}{2}$时等号成立
因此a•b的取值范围为(-∞,$\frac{1}{4}$].
故答案为(-∞,$\frac{1}{4}$].
点评 本题给出直线始终平分圆,求ab的取值范围.着重考查了直线的方程、圆的性质和二次函数的图象与性质等知识,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | $3\sqrt{2}$ | D. | -3或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2.8kg | B. | 8.9kg | C. | 10kg | D. | 28kg |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{6}$,-1) | B. | ($\frac{π}{3}$,-1) | C. | ($\frac{π}{6}$,0) | D. | ($\frac{π}{3}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com