精英家教网 > 高中数学 > 题目详情
20.已知实x,y数满足关系$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+4≥0}\\{y≥0}\end{array}}\right.$,则|x-2y+2|的最大值是5.

分析 作出不等式组对应的平面区域,设u=2x+y-4,则z=|u|,利用u的几何意义,进行平移即可得到结论.

解答 5   由条件可知:z=x-2y+2过点M(-1,3)时z=-5,|z|max=5,
解:作出不等式组$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+4≥0}\\{y≥0}\end{array}}\right.$,对应的平面区域如图:由$\left\{\begin{array}{l}{x+y-2=0}\\{x-y+4=0}\end{array}\right.$解得M(-1,3),
由条件可知:z=x-2y+2过点M(-1,3)时z=-5,|z|max=5,

故答案为:5.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-2,m})$,若$\overrightarrow a∥\overrightarrow b$,则m=(  )
A.-1B.-4C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.钱大妈常说“便宜没好货”,她这句话的意思中:“好货”是“不便宜”的(  )
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,0]时,$f(x)={4^x}+\frac{3}{8}$,函数$g(x)={log_{\frac{1}{2}}}|{x+1}|-\frac{1}{8}$,则关于x的不等式f(x)<g(x)的解集为(  )
A.(-2,-1)∪(-1,0)B.$({-\frac{7}{4},-1})∪({-1,-\frac{1}{4}})$C.$({-\frac{5}{4},-1})∪({-1,-\frac{3}{4}})$D.$({-\frac{3}{2},-1})∪({-1,-\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$z=\frac{2-i}{2+i}$,则|z|=(  )
A.$\frac{1}{5}$B.1C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-1+a,函数g(x)=ax+lnx,a∈R.
(Ⅰ)若曲线y=f(x)与直线y=x相切,求a的值;
(Ⅱ)在(Ⅰ)的条件下,证明:f(x)≥g(x)+1;
(Ⅲ)若函数f(x)与函数g(x)的图象有且仅有一个公共点P(x0,y0),证明:x0<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,复数z满足(i-1)z=i,则z的虚部是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}i$C.$\frac{1}{2}i$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线2ax-by+2=0(a,b∈R)始终平分圆x2+y2+2x-4y+1=0的周长,则ab的取值范围是(-∞,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在对某市年龄在35岁的人调查,随机选取年龄在35岁的100人进行调查,得到他们的情况为:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列联表,并判断有多大的把握认为“支持生二孩与性别有关”?
 支持生二孩 不支持生二孩 合计 
 男性401555
 女性202545
 合计6040100
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
 P(K2≥k0 0.150 0.100 0.050 0.010 0.005 0.001
 k02.072 2.706 3.841 6.635 7.879 10.828 
(Ⅱ)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,再用简单随机抽样的方法从这6人中随机抽取2人,求这2人中恰好有1名男性的概率;
(Ⅲ)以上述样本数据估计总体,从年龄在35岁人中随机抽取3人,记这3人中支持生二孩且为男性的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案