精英家教网 > 高中数学 > 题目详情
12.已知i是虚数单位,复数z满足(i-1)z=i,则z的虚部是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}i$C.$\frac{1}{2}i$D.$-\frac{1}{2}$

分析 把已知等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:∵(i-1)z=i,
∴$z=\frac{i}{-1+i}=\frac{i(-1-i)}{(-1+i)(-1-i)}=\frac{1}{2}-\frac{i}{2}$,
∴z的虚部是-$\frac{1}{2}$.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设${y_1}={4^{0.2}},{y_2}={({\frac{1}{2}})^{-0.3}},{y_3}={log_{\frac{1}{2}}}8$,则y1,y2,y3的大小关系是(  )
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-x;
(1)求函数f(x)的解析式;
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实x,y数满足关系$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+4≥0}\\{y≥0}\end{array}}\right.$,则|x-2y+2|的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}是等差数列,a3+a13=20,a2=-2,则a15=(  )
A.20B.24C.28D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知左、右焦点分别为F1(-c,0),F2(c,0)的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C的离心率和标准方程.
(II)圆${P_1}:{({x+\frac{{4\sqrt{3}}}{7}})^2}+{({y-\frac{{3\sqrt{3}}}{7}})^2}={r^2}({r>0})$与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+2=0(a>0,b>0)对称,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.8B.9C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.底面为菱形的直棱柱ABCD-A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点,
(1)在图中作一个平面α,使得BD?α,且平面AEF∥α(不必给出证明过程,只要求做出α与直棱柱ABCD-A1B1C1D1的截面)
(2)若AB=AA1=2,∠BAD=60°,求点C到所作截面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为(  )
A.100,8B.80,20C.100,20D.80,8

查看答案和解析>>

同步练习册答案