精英家教网 > 高中数学 > 题目详情
(12分)已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.

试题分析:设交抛物线于两点,
两式相减得:得,       …6分
的中点,∴
∴直线l的斜率=3,∴直线的方程为.            …12分
点评:“点差法”是解决圆锥曲线中与弦的中点有关的问题的比较好用的一种方法,其中蕴含了“设而不求”的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)双曲线的离心率等于,且与椭圆有公共焦点,
①求此双曲线的方程.
②若抛物线的焦点到准线的距离等于椭圆的焦距,求该抛物线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果双曲线上一点到它的右焦点距离为,那么 到它右准线距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在平面直角坐标系中,已知点,过点作抛物线的切线,其切点分别为(其中)。
⑴ 求的值;
⑵ 若以点为圆心的圆与直线相切,求圆的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为是两个顶点,如果到直线的距离等于,则椭圆的离心率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:为抛物线上一点,关于轴对称的点,为坐标原点.(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的动点到焦点距离的最小值为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点, 且满足
为坐标原点),当 时,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是曲线上的一个动点,曲线在点处的切线与轴、轴分别交于两点,点是坐标原点. 给出三个命题:①;②的周长有最小值;③曲线上存在两点,使得为等腰直角三角形.其中真命题的个数是
A.1B.2  C.3 D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围;
(3)试用m表示△MPQ的面积S,并求面积S的最大值.

查看答案和解析>>

同步练习册答案