精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱柱中,为正方形,为菱形,.

(Ⅰ)求证:平面平面

(Ⅱ)若中点,是二面角的平面角,求直线与平面所成角的余弦值.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)先根据平面几何知识证明 从而可得 ,可得 ,进而得 平面再由面面垂直的判定定理可得结论;(2)建立空间坐标系,求出平面的法向量,利用向量法求解即可.

试题解析:(1)证明:连接,因为为菱形,所以,又

,所以.

.

因为,且,所以.

,所以平面平面

(2)因为是二面角的平面角,所以,又中点,

所以,所以为等边三角形.

如图所示,分别以轴建立空间直角坐标系,

不妨设,则.

是平面的一个法向量,则

,即

.

所以

所以直线与平面所成的余弦值为.

【方法点晴】本题主要考查利用求二面角,面面垂直的判定定理,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,过点的直线两点,交轴于点轴的距离比.

(Ⅰ)求的方程;

(Ⅱ)若,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若对于任意x∈R,都有f(x﹣2)≤f(x),则实数a的取值范围是(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥S﹣ABCD,底面ABCD为菱形,SA⊥平面ABCD,∠ADC=60°,E,F分别是SC,BC的中点.

(1)证明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),数列的前项和为,点图象上,且的最小值为.

(1)求数列的通项公式;

(2)数列满足,记数列的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的个数是(
①命题“所有的四边形都是矩形”是特称命题;
②命题“x∈R,x2+2<0”是全称命题;
③若p:x∈R,x2+4x+4≤0,则q:x∈R,x2+4x+4≤0是全称命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),是自然对数的底数.

(Ⅰ)当 时,求函数的零点个数;

(Ⅱ)若,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(只填正确说法序号)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},则A∩B={(0,﹣1),(1,0)};
是函数解析式;
是非奇非偶函数;
④设二次函数f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:f(x)= 在区间(1,+∞)上是减函数;命题q;x1x2是方程x2﹣ax﹣2=0的两个实根,不等式m2+5m﹣3≥|x1﹣x2|对任意实数α∈[﹣1,1]恒成立;若¬p∧q为真,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案