精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|x=2n-1,n∈N},N={x|-x2+x+6>0},则M∩N的非空真子集个数为(  )
A.1B.2C.3D.4

分析 化简集合N,根据集合的基本运算,求出M∩N,含有n个元素的集合,其非空真子集个数为2n-2个可得答案.

解答 解:由题意:集合M={x|x=2n-1,n∈N},N={x|-x2+x+6>0}={x|-2<x<3},
那么:M∩N={-1,1}
含有2个元素,其真子集个数为22-2=2个.
故选B.

点评 本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其非空真子集个数为2n-2个.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+2(x<1)}\\{-x-1(x≥1)}\end{array}\right.$,若f(2-x)>f(x),则x的取值范围是(  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:mx2+ny2=1,(m>0,n<0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则双曲线C的离心率等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=asin($\frac{π}{4}$x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.
(Ⅰ)求a的值;
(Ⅱ)将△OPQ绕原点O按逆时针方向旋转角α(0<α<$\frac{π}{4}$),得到△OP′Q′,若点P′恰好落在曲线y=$\frac{3}{x}$(x>0)上(如图所示),试判断点Q′是否也落在曲线y=$\frac{3}{x}$(x>0),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)是增函数,且f(1)=1,则使得f(3x-8)>1成立的x的取值范围是(  )
A.(-∞,2)B.(-∞,0)C.$({\frac{1}{3},1})$D.(2.+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(?x-$\frac{π}{3}$)-sin($\frac{π}{2}$-?x).
(I)求f(x)的最小值
(II)若函数y=f(x)图象的两个相邻的对称轴之间的距离为$\frac{π}{2}$,求其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a∈(0,1),则函数y=$\frac{1}{\sqrt{lo{g}_{a}(x-1)}}$的定义域为(  )
A.(1,2]B.(1,+∞)C.(2,+∞)D.(1,2)

查看答案和解析>>

同步练习册答案