精英家教网 > 高中数学 > 题目详情
16.已知$π<α<2π,cos(α-9π)=-\frac{3}{5},求cos(α-\frac{11π}{2})$的值(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

分析 利用诱导公式化简已知条件,结合同角三角函数基本关系式,求解即可.

解答 解:由cos(α-9π)=-cosα=-$\frac{3}{5}$,∴cosα=$\frac{3}{5}$,∵α∈(π,2π),∴sinα=-$\sqrt{1-co{s}^{2}α}$=$-\frac{4}{5}$
cos($α-\frac{11π}{2}$)=-sinα=$\frac{4}{5}$.
故选:D.

点评 本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的离心率为$\frac{\sqrt{5}}{2}$,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,反比例函数y=$\frac{2}{x}$的图象与一次函数f(x)的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求f(x)解析式.
(2)求C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为考察某种药物预防疾病的效果,进行动物试验得到如下数据的列联表:
患病未患病总计
没服用药203050
服用药xy50
总计30N100
设从没服药的动物中任取两只,未患病数为ζ;
(I)求出列联表中数据x,y,N的值及ζ的分布列;
(Ⅱ)能够以97.5%的把握认为药物有效吗?(参考数据如下)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)左、右焦点分别为F1,F2,过F2的直线交双曲线C的右支于A,B两点,如果|AF1|=3a,|BF1|=5a,则此双曲线的渐近线方程为y=$±\frac{{\sqrt{6}}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合$A=\left\{{x|\frac{2x-1}{x+1}≤1,x∈R}\right\}$,集合B={x||x-a|≤1,x∈R}.
(1)求集合A;
(2)若B∩∁RA=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个课外兴趣小组共有5名成员,其中3名女性成员、2名男性成员,现从中随机选取2名成员进行学习汇报,记选出女性成员的人数为X,则X的数学期望是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{4}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a∈Z,且0≤a≤13,若512016-a能被13整除,则a=(  )
A.1B.2C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}x-a,x≤0\\ x+\frac{a}{x},x>0\end{array}$,若f(-1)=-5,则f(x)在(1,+∞)上的最小值为4.

查看答案和解析>>

同步练习册答案