精英家教网 > 高中数学 > 题目详情
16.设函数$f(x)={e^x}-ax-\frac{a}{2}$(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,$\sqrt{e}=1.64872…$).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;
(Ⅱ)若ex≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.

分析 (Ⅰ)分离参数,构造函数,利用导数求出函数的最值,问题得以解决;
(Ⅱ)构造函数设$g(x)=\sqrt{e}x+\frac{{\sqrt{e}}}{2}-lnx(x>0)$,利用导数求出函数的最值,即可证明.

解答 解:(Ⅰ)∵$f(x)={e^x}-ax-\frac{a}{2}$,f(x)≥0在x∈R上恒成立,
∴a≤$\frac{{e}^{x}}{x+\frac{1}{2}}$,
设h(x)=$\frac{{e}^{x}}{x+\frac{1}{2}}$,
∴h′(x)=$\frac{{e}^{x}(x-\frac{1}{2})}{(x+\frac{1}{2})^{2}}$,
令h′(x)=0,解得x=$\frac{1}{2}$,
当x>$\frac{1}{2}$,即h′(x)>0,函数单调递增,
当x<$\frac{1}{2}$,即h′(x)<0,函数单调递减,
∴h(x)min=h($\frac{1}{2}$)=$\sqrt{e}$,
∴0<a≤$\sqrt{e}$,
故a的取值范围为$[0,\sqrt{e}]$;
(Ⅱ)设$g(x)=\sqrt{e}x+\frac{{\sqrt{e}}}{2}-lnx(x>0)$,
∴$g'(x)=\sqrt{e}-\frac{1}{x}(x>0)$,g'(x)>0,可得$x>\frac{1}{{\sqrt{e}}}$;g'(x)<0,可得$0<x<\frac{1}{{\sqrt{e}}}$.
∴g(x)在($\frac{1}{\sqrt{e}}$,+∞)上单调递增;在$(0,\frac{1}{{\sqrt{e}}})$上单调递减.
∴g(x)≥g($\frac{1}{\sqrt{e}}$)=$\frac{3+\sqrt{e}}{2}$,
∵$\sqrt{e}=1.64872…$,
∴$\sqrt{e}$>1.6,
∴g(x)>2.3.
由(Ⅰ)可得ex>$\sqrt{e}$x+$\frac{\sqrt{e}}{2}$,
∴ex-lnx的最小值大于2.3,
故若ex≥lnx+m对任意x>0恒成立,则m的最大值一定大于2.3.

点评 本题考查了导数和函数的最值的关系,关键是构造函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{1}{3}{x^3}-4x+6$,
(1)求函数的极值;
(2)求函数在区间[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对两个分类变量进行独立性检验的主要作用是(  )
A.判断模型的拟合效果
B.对两个变量进行相关分析
C.给出两个分类变量有关系的可靠程度
D.估计预报变量的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是[$\frac{3}{2e}$,1).
(2)已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围$[-\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在棱长为2的正方体AC1中,点P,Q分别在棱BC、CD上,满足B1Q⊥D1P,且PQ=$\sqrt{2}$.
(1)试确定P、Q两点的位置.
(2)求B1Q与平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.规定 $C_x^m=\frac{x(x-1)…(x-m+1)}{m!}$,其中x∈R,m是正整数,这是组合数$C_n^m$(m、n是正整数,且m≤n)的一种推广.设x>0,则$\frac{C_x^3}{{{{(C_x^1)}^2}}}$最小值$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.
如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
其中m≤n,m,n∈N*.设1≤x≤m,1≤y≤n,则$\frac{x+y+2}{x+1}$的最小值为$\frac{8}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax2+x,其中a为常数,e为自然对数的底数
(1)当a=1时,求函数f(x)的最值;
(2)若函数g(x)=$\frac{f(x)}{x}$在区间(1,e)内有零点,求a的取值范围.

查看答案和解析>>

同步练习册答案