分析 (1)运用离心率公式及a,b,c的关系,解得a,b,可得椭圆方程,将直线y=1-x代入椭圆方程,求交点,由两点的距离公式计算即可得到所求值;
(2)设A(x1,y1),B(x2,y2),联立直线方程和椭圆方程,运用韦达定理,再由向量垂直的条件:数量积为0,运用离心率公式,可得a关于e的等式,化简整理,即可得到所求2a的最大值.
解答 解:(1)由题意可得$e=\frac{{\sqrt{2}}}{2},2c=2$,
即有$a=\sqrt{2},c=1$,则$b=\sqrt{{a^2}-{c^2}}=1$,
即有椭圆的方程为$\frac{x^2}{2}+{y^2}=1$,
联立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=-x+1\end{array}\right.$,消去y得:3x2-4x=0,
解得$A({\frac{4}{3},-\frac{1}{3}}),B({0,1})$,
即有$|AB|=\frac{4}{3}\sqrt{2}$;
(2)设A(x1,y1),B(x2,y2),
由$\overrightarrow{OA}⊥\overrightarrow{OB}$,可得$\overrightarrow{OA}•\overrightarrow{OB}=0$,即x1x2+y1y2=0,
由$\left\{\begin{array}{l}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\ y=-x+1\end{array}\right.$,消去y得(a2+b2)x2-2a2x+a2(1-b2)=0,
由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,
整理得a2+b2>1,又${x_1}+{x_2}=\frac{{2{a^2}}}{{{a^2}+{b^2}}},{x_1}{x_2}=\frac{{{a^2}({1-{b^2}})}}{{{a^2}+{b^2}}}$,
y1y2=(-x1+1)(-x2+1)=x1x2+(x1+x2)+1,
由x1x2+y1y2=0,得2x1x2-(x1+x2)+1=0,
即为$\frac{{2{a^2}({1-{b^2}})}}{{{a^2}+{b^2}}}-\frac{{2{a^2}}}{{{a^2}+{b^2}}}+1=0$,
整理得a2+b2-2a2b2=0,
b2=a2-c2=a2-a2e2,代入上式得$2{a^2}=1+\frac{1}{{1-{e^2}}}$,
即有${a^2}=\frac{1}{2}({1+\frac{1}{{1-{e^2}}}})$,由$\frac{1}{2}≤e≤\frac{{\sqrt{2}}}{2}$,可得$\frac{1}{4}≤{e^2}≤\frac{1}{2}$,
则$\frac{1}{2}≤1-{e^2}≤\frac{3}{4}$,即$\frac{4}{3}≤\frac{1}{{1-{e^2}}}≤2$,
即$\frac{7}{3}≤1+\frac{1}{{1-{e^2}}}≤3$,可得$\frac{7}{6}≤{a^2}≤\frac{3}{2}$,适合条件a2+b2>1,
由此得$\frac{{\sqrt{42}}}{6}≤a≤\frac{{\sqrt{6}}}{2}$,即$\frac{{\sqrt{42}}}{3}≤2a≤\sqrt{6}$,
故长轴长的最大值为$\sqrt{6}$.
点评 本题考查椭圆的方程的求法,注意运用离心率公式,以及弦长的求法,考查直线方程和椭圆方程联立,运用韦达定理,以及向量垂直的条件:数量积为0,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,π] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{3}$,π] | D. | [$\frac{π}{3}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5$\sqrt{2}$ | B. | $\sqrt{41}$ | C. | $\sqrt{53}$ | D. | $\sqrt{45}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com