精英家教网 > 高中数学 > 题目详情
3.已知直线y=-x+1与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$相交于A、B两点.
(1)若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,求线段AB的长;
(2)若向量$\overrightarrow{OA}$与向量$\overrightarrow{OB}$互相垂直(其中O为坐标原点),当椭圆的离心率$e∈[{\frac{1}{2},\frac{{\sqrt{2}}}{2}}]$时,求椭圆长轴长的最大值.

分析 (1)运用离心率公式及a,b,c的关系,解得a,b,可得椭圆方程,将直线y=1-x代入椭圆方程,求交点,由两点的距离公式计算即可得到所求值;
(2)设A(x1,y1),B(x2,y2),联立直线方程和椭圆方程,运用韦达定理,再由向量垂直的条件:数量积为0,运用离心率公式,可得a关于e的等式,化简整理,即可得到所求2a的最大值.

解答 解:(1)由题意可得$e=\frac{{\sqrt{2}}}{2},2c=2$,
即有$a=\sqrt{2},c=1$,则$b=\sqrt{{a^2}-{c^2}}=1$,
即有椭圆的方程为$\frac{x^2}{2}+{y^2}=1$,
联立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=-x+1\end{array}\right.$,消去y得:3x2-4x=0,
解得$A({\frac{4}{3},-\frac{1}{3}}),B({0,1})$,
即有$|AB|=\frac{4}{3}\sqrt{2}$;
(2)设A(x1,y1),B(x2,y2),
由$\overrightarrow{OA}⊥\overrightarrow{OB}$,可得$\overrightarrow{OA}•\overrightarrow{OB}=0$,即x1x2+y1y2=0,
由$\left\{\begin{array}{l}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\ y=-x+1\end{array}\right.$,消去y得(a2+b2)x2-2a2x+a2(1-b2)=0,
由△=(-2a22-4a2(a2+b2)(1-b2)>0,
整理得a2+b2>1,又${x_1}+{x_2}=\frac{{2{a^2}}}{{{a^2}+{b^2}}},{x_1}{x_2}=\frac{{{a^2}({1-{b^2}})}}{{{a^2}+{b^2}}}$,
y1y2=(-x1+1)(-x2+1)=x1x2+(x1+x2)+1,
由x1x2+y1y2=0,得2x1x2-(x1+x2)+1=0,
即为$\frac{{2{a^2}({1-{b^2}})}}{{{a^2}+{b^2}}}-\frac{{2{a^2}}}{{{a^2}+{b^2}}}+1=0$,
整理得a2+b2-2a2b2=0,
b2=a2-c2=a2-a2e2,代入上式得$2{a^2}=1+\frac{1}{{1-{e^2}}}$,
即有${a^2}=\frac{1}{2}({1+\frac{1}{{1-{e^2}}}})$,由$\frac{1}{2}≤e≤\frac{{\sqrt{2}}}{2}$,可得$\frac{1}{4}≤{e^2}≤\frac{1}{2}$,
则$\frac{1}{2}≤1-{e^2}≤\frac{3}{4}$,即$\frac{4}{3}≤\frac{1}{{1-{e^2}}}≤2$,
即$\frac{7}{3}≤1+\frac{1}{{1-{e^2}}}≤3$,可得$\frac{7}{6}≤{a^2}≤\frac{3}{2}$,适合条件a2+b2>1,
由此得$\frac{{\sqrt{42}}}{6}≤a≤\frac{{\sqrt{6}}}{2}$,即$\frac{{\sqrt{42}}}{3}≤2a≤\sqrt{6}$,
故长轴长的最大值为$\sqrt{6}$.

点评 本题考查椭圆的方程的求法,注意运用离心率公式,以及弦长的求法,考查直线方程和椭圆方程联立,运用韦达定理,以及向量垂直的条件:数量积为0,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知(1+x+x2)(x+$\frac{1}{{x}^{3}}$)n的展式中没有常数项,n∈N*,且2≤n≤8,试求出n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断三点A(-3,0)、B(-1,-4)和C(1,2)否在曲线y=x2+2x-3上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,1+cosA=λsin2A.
(1)若λ=2,求角A的大小;
(2)若sinB+sinC=$\sqrt{3}$sinA,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{2}$arccos($\frac{1}{4}$+x-x2)的值域为(  )
A.[0,π]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{3}$,π]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.长方体ABCD-A′B′C′D′中,交于顶点A的三条棱长分别为AD=3,AA′=2,AB=4,则从点A沿表面到C′的最短距离为(  )
A.5$\sqrt{2}$B.$\sqrt{41}$C.$\sqrt{53}$D.$\sqrt{45}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=-2x+2恰好经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点和上顶点,则椭圆的离心率等于$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1坐标为(-2,0),F2为椭圆C的右焦点,点M($\sqrt{3}$,1)在椭圆C上.
(1)求椭圆C的方程;
(2)直线l过F2与椭圆C相交于P,Q两点,记弦PQ中点为N,过F2作直线l的垂线与直线ON交于点T.
①若直线l斜率为$\sqrt{3}$,求PF1+QF1的值;
②求证:点T总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线τ:y2=8x的焦点F作直线交抛物线于A,B两点,若|AF|=6,则抛物线τ的顶点到直线AB的距离为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案