精英家教网 > 高中数学 > 题目详情
从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为           .
这4个数中任取2个数共有种取法,其中乘积为6的有两种取法,因此所求概率为
【考点】古典概型.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一汽车在前进途中经过4个路口,汽车在每个路口遇到绿灯的概率为
3
4
,遇到红灯(禁止通行)的概率为
1
4
.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数.则停车时最多已经通过2个路口的概率是(  )
A.
9
64
B.
37
64
C.
27
256
D.
175
256

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三个人乘同一列火车,火车有10节车厢,则至少有2人上了同一车厢的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续投掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角记为α,则α∈(0,)的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:
奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是
(1)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(2)求教师甲在一场比赛中获奖的概率;
(3)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.

(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.

查看答案和解析>>

同步练习册答案