精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=alnx-x,g(x)=aex-x,其中a为正实数.
(Ⅰ)若f(x)在(1,+∞)上是单调减函数,且g(x)在(2,+∞)上有最小值,求a的取值范围;
(Ⅱ)若函数f(x)与g(x)都没有零点,求a的取值范围.

分析 (Ⅰ)求出函数的导数,得到函数的单调区间,求出a的范围即可;
(Ⅱ)分别求出f(x)的最大值和g(x)的最小值,得到关于a的不等式组,解出即可.

解答 解:(Ⅰ)f′(x)=$\frac{a-x}{x}$(x>0,a>0),
∵0<x<a时,f′(x)>0;x>a时,f′(x)<0,
∴f(x)在(,a)上是增函数,在(a,+∞)上是减函数,又f(x)在(1,+∞)上是减函数,
∴0<a≤1,
又g′(x)=aex-1,
∴x>ln$\frac{1}{a}$时,g′(x)>0,x<ln$\frac{1}{a}$时,g′(x)<0,
∴x=ln$\frac{1}{a}$时,g′(x)最小,∴ln$\frac{1}{a}$>2时,
∴0<a<$\frac{1}{{e}^{2}}$,∴a∈(0,$\frac{1}{{e}^{2}}$);
(Ⅱ)由(Ⅰ)知x=a时,f(x)取得最大值,x=ln$\frac{1}{a}$,g(x)取得最小值,
由题意可得f(a)<0且g(ln$\frac{1}{a}$)>0,
∴$\left\{\begin{array}{l}{alna-a<0}\\{a•\frac{1}{a}-ln\frac{1}{a}>0}\end{array}\right.$,∴$\frac{1}{e}$<a<e即a∈($\frac{1}{e}$,e).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数的零点问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N分别是AB,PC的中点;
(1)求四棱锥P-ABCD的体积;
(2)求MN与面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{x+2}{x-6}$.
(1)若f(a)=2,求a及f(3)的值;
(2)求g(x)=f(x+6)的解析式;
(3)判断g(x)在[1,4]上的单调性并求出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范围;
(3)若m>n>0,试比较$\frac{f(m)-f(n)}{m-n}$与$\frac{2n}{{{m^2}+{n^2}}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明方程ex-1+x-2=0仅有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{1}{{e}^{x}}$+$\frac{a}{x}$(x>0,a∈R),若存在实数m,n,使得f(x)≥0的解集恰好为[m,n],则实数a的取值范围为(-$\frac{1}{e}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{1}{\sqrt{lnx-1}}$的定义域是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是各项均为正数的等差数列,公差为2.对任意的n∈N*,bn是an和an+1的等比中项.设cn=b2n+1-bn2,n∈N*
(Ⅰ)求证:数列{cn}是等差数列.
(Ⅱ)若c1=16,求数列an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,空间四边形 O A BC中,$\overrightarrow{{O}{A}}$=$\vec a$,$\overrightarrow{{O}{B}}$=$\vec b$,$\overrightarrow{{O}C}$=$\vec c$,点 M在 O A上,且$\overrightarrow{{O}{M}}$=$\frac{2}{3}$$\overrightarrow{{O}{A}}$,点 N为 BC中点,则$\overrightarrow{{M}{N}}$等于$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$.(用向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)

查看答案和解析>>

同步练习册答案