分析 连接AM,根据向量的加减运算三角形法则,求出$\overrightarrow{AM}$,$\overrightarrow{AN}$,即可求$\overrightarrow{MN}$.
解答 解:由题意:$\overrightarrow{{O}{A}}$=$\vec a$,$\overrightarrow{{O}{B}}$=$\vec b$,$\overrightarrow{{O}C}$=$\vec c$,
∴$\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{c}-\overrightarrow{b}$.
点N为 BC中点,那么:$\overrightarrow{BN}=\frac{1}{2}(\overrightarrow{c}-\overrightarrow{b})$,
$\overrightarrow{{O}{M}}$=$\frac{2}{3}$$\overrightarrow{{O}{A}}$,则$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{a}$,
连接AN,则$\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}$,
那么:$\overrightarrow{MN}$=$\overrightarrow{AN}+\overrightarrow{MA}$=$\frac{1}{3}\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{a}+\frac{1}{2}(\overrightarrow{c}-\overrightarrow{b})$=$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$,
故答案为:$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$.
点评 本题考查了平面向量的线性运算的应用及平面向量基本定理的应用,注意平面向量加法法则的合理运用.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a3>b3 | B. | a2<a3 | C. | a3<b3 | D. | b2>b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2sin2xcos2x | B. | y=sin22x-cos22x | C. | y=xsinx | D. | y=cos2x-sin2x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com