分析 求导,令f′(x)=0,解得:x=1,x=3,根据函数的单调性即可求得当x=3,函数取极小值,极小值为f(3)=-1.
解答 解:f(x)=$\frac{1}{3}$x3-2x2+3x-1,
f′(x)=3x2-4x+3,
令f′(x)=0,即x2-4x+3=0,
解得:x=1,x=3,
f′(x)>0,解得:x>3,x<1,
∴f(x)的单调递增区间为(-∞,1),(3,+∞),
f′(x)<0,解得:1<x<3,
∴f(x)的单调递减区间为(1,3),
∴当x=3,函数取极小值,极小值为f(3)=$\frac{1}{3}$×27-2×9+3×3-1=-1,
故答案为:-1.
点评 本题考查利用导数求函数的单调性及极值,考查导数的运算及不等式的解法,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{{{x^2}-x}}{x}$,g(x)=x-1 | B. | f(x)=1,g(x)=x0 | ||
| C. | f(u)=$\sqrt{\frac{1+u}{1-u}}$,g(v)=$\sqrt{\frac{1+v}{1-v}}$ | D. | f(x)=x,g(x)=$\sqrt{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (0,$\frac{1}{2}}$) | C. | (${\frac{1}{2}$,1) | D. | (1,$\frac{3}{2}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com