精英家教网 > 高中数学 > 题目详情
8.若定义域为R的偶函数y=f(x)满足f(x+2)+f(x)=0,且当x∈[0,2]时,f(x)=2-x2,则方程f(x)=2sinx在[-3π,3π]内根的个数是5.

分析 先求得偶函数f(x)的周期为4,根据当x∈[0,2]时,f(x)=2-x2,再画出y=f(x)以及y=2sinx在[-3π,3π]内的图象,数形结合可得结论.

解答 解:定义域为R的偶函数y=f(x)满足f(x+2)+f(x)=0,即足f(x+2)=-f(x),
∴f(x+4)=f(x),故f(x)的周期为4.
且当x∈[0,2]时,f(x)=2-x2,则当x∈[-2,2]时,f(x)=2-x2
再画出y=f(x)以及y=2sinx在[-3π,3π]内的图象,如图所示:
数形结合可得函数y=f(x)的图象和函数y=2sinx在[-3π,3π]内的图象的交点个数为5个,
则方程f(x)=2sinx在[-3π,3π]内根的个数是5,
故答案为:5.

点评 本题主要考查函数的奇偶性以及函数的周期性,方程的根的存在性以及个数判断,函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.圆O的参数方程为$\left\{\begin{array}{l}x=-\frac{\sqrt{2}}{2}+rcosθ\\ y=-\frac{\sqrt{2}}{2}+rsinθ\end{array}$(θ为参数,r>0).
(Ⅰ)求圆O的圆心的极坐标(ρ≥0,0≤θ<2π );
(Ⅱ)当r为何值时,圆O上的点到直线l的最大距离为2+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=2sin(\frac{π}{4}-2x)$,则函数f(x)的单调递减区间为(  )
A.$[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$B.$[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$
C.$[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$D.$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一种作物的年收获量 y(单位:kg)与它“相近”作物的株数 x具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 1m),并分别记录了相近作物的株数为 1,2,3,5,6,7时,该作物的年收获量的相关数据如表:
x123567
y605553464541
(1)求该作物的年收获量 y关于它“相近”作物的株数x的线性回归方程;
(2)农科所在如图所示的直角梯形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,图中
每个小正方形的边长均为 1,若从直角梯形地块的边界和内部各随机选取一株该作物,求这两株作物“相
近”且年产量仅相差3kg的概率.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估
计分别为,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{1-2i}{2+i}$=(  )
A.-iB.iC.$\frac{4}{5}-i$D.$\frac{4}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ y≥1\end{array}\right.$,则目标函数z=x+2y的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足$\left\{\begin{array}{l}x+y-2≥0\\ x-y+{m^2}≥0\\ x≤2\end{array}\right.$若目标函数z=-2x+y的最大值不超过2,则实数m的取值范围是(  )
A.(-2,2)B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知曲线y=x3在点(1,1)处的切线与直线ax+y+1=0垂直,则a的值是(  )
A.-1B.1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若函数g(x)=f(x)-x有两个相异极值点x1、x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

同步练习册答案