16£®Ä³Å©¿ÆËù·¢ÏÖ£¬Ò»ÖÖ×÷ÎïµÄÄêÊÕ»ñÁ¿ y£¨µ¥Î»£ºkg£©ÓëËü¡°Ïà½ü¡±×÷ÎïµÄÖêÊý x¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¨ËùνÁ½Öê×÷Îï¡°Ïà½ü¡±ÊÇÖ¸ËüÃǵÄÖ±Ïß¾àÀë²»³¬¹ý 1m£©£¬²¢·Ö±ð¼Ç¼ÁËÏà½ü×÷ÎïµÄÖêÊýΪ 1£¬2£¬3£¬5£¬6£¬7ʱ£¬¸Ã×÷ÎïµÄÄêÊÕ»ñÁ¿µÄÏà¹ØÊý¾ÝÈç±í£º
x123567
y605553464541
£¨1£©Çó¸Ã×÷ÎïµÄÄêÊÕ»ñÁ¿ y¹ØÓÚËü¡°Ïà½ü¡±×÷ÎïµÄÖêÊýxµÄÏßÐԻع鷽³Ì£»
£¨2£©Å©¿ÆËùÔÚÈçͼËùʾµÄÖ±½ÇÌÝÐεؿéµÄÿ¸ö¸ñµã£¨Ö¸×Ý¡¢ºáÖ±ÏߵĽ»²æµã£©´¦¶¼ÖÖÁËÒ»Öê¸Ã×÷ÎͼÖÐ
ÿ¸öСÕý·½Ðεı߳¤¾ùΪ 1£¬Èô´ÓÖ±½ÇÌÝÐεؿéµÄ±ß½çºÍÄÚ²¿¸÷Ëæ»úѡȡһÖê¸Ã×÷ÎÇóÕâÁ½Öê×÷Îï¡°Ïà
½ü¡±ÇÒÄê²úÁ¿½öÏà²î3kgµÄ¸ÅÂÊ£®
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À
¼Æ·Ö±ðΪ£¬$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$a=\overline y-b\overline x$£®

·ÖÎö £¨1£©¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý$\widehat{b}$¡¢$\widehat{a}$£¬¼´¿Éд³ö»Ø¹é·½³Ì£»
£¨2£©ÓÉ£¨1£©ÖлعéÖ±Ïß¹ý³Ì¼ÆËãx=4ʱ$\stackrel{¡Ä}{y}$µÄÖµ£¬
¸ù¾Ý¹Åµä¸ÅÐ͵ĸÅÂʹ«Ê½¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨1£©¼ÆËã$\overline{x}$=$\frac{1}{6}$¡Á£¨1+2+3+5+6+7£©=4£¬
$\overline{y}$=$\frac{1}{6}$¡Á£¨60+55+53+46+45+41£©=50£¬
$\sum_{i=1}^{6}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=£¨-3£©¡Á10+£¨-2£©¡Á5+£¨-1£©¡Á3+1¡Á£¨-4£©+2¡Á£¨-5£©+3¡Á£¨-9£©=-84£¬
$\sum_{i=1}^{6}$${{£¨x}_{i}-\overline{x}£©}^{2}$=£¨-3£©2+£¨-2£©2+£¨-1£©2+12+22+32=28£»
¡à»Ø¹éϵÊýΪ$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{-84}{28}$=-3£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=50-£¨-3£©¡Á4=62£¬
¡à¸Ã×÷ÎïµÄÄêÊÕ»ñÁ¿y¹ØÓÚËü¡°Ïà½ü¡±×÷ÎïµÄÖêÊýxµÄÏßÐԻع鷽³ÌÊÇ$\stackrel{¡Ä}{y}$=-3x+62£»
£¨2£©ÓÉ£¨1£©ÖлعéÖ±Ïß¹ý³ÌÖª£¬
µ±x=4ʱ£¬$\stackrel{¡Ä}{y}$=-3¡Á4+62=50£»
´ÓÖ±½ÇÌÝÐεؿéµÄ±ß½çºÍÄÚ²¿¸÷Ëæ»úѡȡһÖê¸Ã×÷Î¹²ÓР10¡Á2=20ÖÖÇéÐΣ¬
ÒòΪÕâÁ½Öê×÷ÎïÄê²úÁ¿½öÏà²î3kg£¬¹ÊÂú×ãÌõ¼þµÄÇéÐÎÓÐ4ÖÖ£¬
ËùÒÔÕâÁ½Öê×÷Îï¡°Ïà½ü¡±ÇÒÄê²úÁ¿½öÏà²î 3kgµÄ¸ÅÂÊΪ$\frac{4}{20}=\frac{1}{5}$£®

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˹ŵä¸ÅÐ͵ĸÅÂʼÆËãÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÉèSnµÈ²îÊýÁÐ{an}µÄǰnÏîÖ®ºÍ£¬ÈôS2014=2014a£¬S2015=2015b£¨a£¬bΪ³£Êý£©£¬ÔòS2016=2016£¨2b-a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚ¡÷ABCÖУ¬AB=3£¬AC=4£®Èô¡÷ABCµÄÃæ»ýΪ$3\sqrt{3}$£¬ÔòBCµÄ³¤ÊÇ$\sqrt{13}$»ò$\sqrt{37}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑ֪ijÊß²ËÉ̵êÂò½øµÄÍÁ¶¹x£¨¶Ö£©Óë³öÊÛÌìÊýy£¨Ì죩֮¼äµÄ¹ØÏµÈç±íËùʾ£º
x234567912
y12334568

£¨¢ñ£©Çë¸ù¾Ý±íÖÐÊý¾ÝÔÚËù¸øÍø¸ñÖлæÖÆÉ¢µãͼ£»
£¨¢ò£©Çë¸ù¾Ý±íÖÐÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£¨ÆäÖÐ$\widehatb$±£Áô2λÓÐЧÊý×Ö£©£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖеļÆËã½á¹û£¬Èô¸ÃÊß²ËÉ̵êÂò½øÍÁ¶¹40¶Ö£¬ÔòÔ¤¼Æ¿ÉÒÔÏúÊÛ¶àÉÙÌ죨¼ÆËã½á¹û±£ÁôÕûÊý£©£¿
¸½£º$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Òâ´óÀûÖøÃûÊýѧ¼Òì³²¨ÄÇÆõÔÚÑо¿ÍÃ×ӵķ±Ö³ÎÊÌâʱ£¬·¢ÏÖÓÐÕâÑùµÄÒ»ÁÐÊý£º1£¬1£¬2£¬3£¬5£¬8£¬¡­£¬¸ÃÊýÁеÄÌØµãÊÇ£ºÇ°Á½¸öÊý¾ùΪ 1£¬´ÓµÚÈý¸öÊýÆð£¬Ã¿Ò»¸öÊý¶¼µÈÓÚËüÇ°ÃæÁ½¸öÊýµÄºÍ£®ÈËÃǰÑÕâÑùµÄÒ»ÁÐÊý×é³ÉµÄÊýÁÐ{an}³ÆÎªì³²¨ÄÇÆõÊýÁУ®Ôò£¨a1a3+a2a4+a3a5+a4a6+a5a7+a6a8£©-£¨a22+a32+a42+a52+a62+a72£©=£¨¡¡¡¡£©
A£®0B£®-1C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ² $C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$£¬ÀëÐÄÂÊ$e=\frac{{\sqrt{2}}}{2}$£¬ËüµÄ³¤Ö᳤µÈÓÚÔ²x2+y2-2x+4y-3=0µÄÖ±¾¶£®
£¨1£©ÇóÍÖÔ² CµÄ·½³Ì£»
£¨2£©Èô¹ýµã$P£¨{0£¬\frac{2}{3}}£©$µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃÒÔABΪֱ¾¶µÄÔ²¾­¹ýÕâ¸ö¶¨µã£¬Èô´æÔÚ£¬Çó³ö¶¨µãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô¶¨ÒåÓòΪRµÄżº¯Êýy=f£¨x£©Âú×ãf£¨x+2£©+f£¨x£©=0£¬ÇÒµ±x¡Ê[0£¬2]ʱ£¬f£¨x£©=2-x2£¬Ôò·½³Ìf£¨x£©=2sinxÔÚ[-3¦Ð£¬3¦Ð]ÄÚ¸ùµÄ¸öÊýÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÊýÁÐ{an}µÄÆæÊýÏî³ÉµÈ²îÊýÁУ¬Å¼ÊýÏî³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«²îºÍ¹«±È¶¼ÊÇ2£¬Èô¶ÔÂú×ãm+n¡Ü5µÄÈÎÒâÕýÕûÊým£¬n£¬¾ùÓÐam+an=am+n³ÉÁ¢£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Èôbn=$\left\{\begin{array}{l}{\frac{{a}_{n}+1}{{{a}_{n}}^{2}{{a}_{n+2}}^{2}}£¬nÎªÆæÊý}\\{\frac{1}{{{a}_{n}}^{2}}£¬nΪżÊý}\end{array}\right.$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Éèx£¬yÂú×ã$\left\{\begin{array}{l}{y£¾0}\\{y¡Üx}\\{|x|+|y|¡Ü1}\end{array}\right.$£¬Ôòz=x+yµÄ×î´óֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸