4£®ÒÑ֪ijÊß²ËÉ̵êÂò½øµÄÍÁ¶¹x£¨¶Ö£©Óë³öÊÛÌìÊýy£¨Ì죩֮¼äµÄ¹ØÏµÈç±íËùʾ£º
x234567912
y12334568

£¨¢ñ£©Çë¸ù¾Ý±íÖÐÊý¾ÝÔÚËù¸øÍø¸ñÖлæÖÆÉ¢µãͼ£»
£¨¢ò£©Çë¸ù¾Ý±íÖÐÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$£¨ÆäÖÐ$\widehatb$±£Áô2λÓÐЧÊý×Ö£©£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©ÖеļÆËã½á¹û£¬Èô¸ÃÊß²ËÉ̵êÂò½øÍÁ¶¹40¶Ö£¬ÔòÔ¤¼Æ¿ÉÒÔÏúÊÛ¶àÉÙÌ죨¼ÆËã½á¹û±£ÁôÕûÊý£©£¿
¸½£º$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®

·ÖÎö £¨¢ñ£©¸ù¾Ý±íÖÐÊý¾Ý»­³öÉ¢µãͼ¼´¿É£»
£¨¢ò£©ÒÀÌâÒ⣬¼ÆËã$\overline x$¡¢$\overline y$£¬Çó³ö»Ø¹éϵÊý£¬Ð´³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨¢ó£©Óɻع鷽³Ì¼ÆËãx=40ʱyµÄÖµ¼´¿É£®

½â´ð ½â£º£¨¢ñ£©¸ù¾Ý±íÖÐÊý¾Ý»­³öÉ¢µãͼÈçÏÂËùʾ£º

£¨¢ò£©ÒÀÌâÒ⣬¼ÆËã$\overline x$=$\frac{1}{8}$£¨2+3+4+5+6+7+9+12£©=6£¬
$\overline y$=$\frac{1}{8}$£¨1+2+3+3+4+5+6+8£©=4£¬
$\sum_{i=1}^8{x{\;}_i^2}=4+9+16+25+36+49+81+144=364$£¬
$\sum_{i=1}^8{x_i}{y_i}=2+6+12+15+24+35+54+96=244$£¬
Ç󻨹éϵÊýΪ$\widehatb=\frac{{\sum_{i=1}^8{x_i}{y_i}-8\overline x\overline y}}{{\sum_{i=1}^8{x{\;}_i^2}-8{{\overline x}^2}}}=\frac{244-8¡Á6¡Á4}{{364-8¡Á{6^2}}}=\frac{52}{76}=0.68$£¬
¡à$\widehata=4-0.68¡Á6=-0.08$£»
¡à»Ø¹éÖ±Ïß·½³ÌΪ$\widehaty=0.68x-0.08$£®
£¨¢ó£©ÓÉ£¨¢ò£©¿ÉÖªµ±x=40ʱ£¬y=0.68¡Á40-0.08¡Ö27£¬
¹ÊÂò½øÍÁ¶¹40¶Ö£¬Ô¤¼Æ¿ÉÏúÊÛ27Ì죮

µãÆÀ ±¾Ì⿼²éÁ˻عéÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪˫ÇúÏßC1£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¶¥µãΪM£¬Å×ÎïÏßC2£ºy2=-2axµÄ½¹µãΪF£¬ÈôÔÚÇúÏßC1µÄ½¥½üÏßÉÏ´æÔÚµãPʹµÃPM¡ÍPF£¬ÔòË«ÇúÏßC1ÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®$£¨{1£¬\frac{{3\sqrt{2}}}{4}}]$C£®£¨1£¬+¡Þ£©D£®$£¨{\frac{{3\sqrt{2}}}{4}£¬2}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y+1¡Ü0\\ x+y-3¡Ý0\\ y¡Ü4\end{array}\right.$Ôòz=ax+yµÄ×îСֵΪ1£¬ÔòÕýʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®10B£®8C£®3D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{4}{1+si{n}^{2}¦È}$£¬ÇÒÖ±Ïßl¾­¹ýÇúÏßCµÄ×ó½¹µãF£®
£¨ I £©ÇóÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤ÎªL£¬ÇóLµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=2sin£¨\frac{¦Ð}{4}-2x£©$£¬Ôòº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äΪ£¨¡¡¡¡£©
A£®$[{\frac{3¦Ð}{8}+2k¦Ð£¬\frac{7¦Ð}{8}+2k¦Ð}]£¨k¡ÊZ£©$B£®$[{-\frac{¦Ð}{8}+2k¦Ð£¬\frac{3¦Ð}{8}+2k¦Ð}]£¨k¡ÊZ£©$
C£®$[{\frac{3¦Ð}{8}+k¦Ð£¬\frac{7¦Ð}{8}+k¦Ð}]£¨k¡ÊZ£©$D£®$[{-\frac{¦Ð}{8}+k¦Ð£¬\frac{3¦Ð}{8}+k¦Ð}]£¨k¡ÊZ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªa=21.3£¬b=40.7£¬c=log38£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼c£¼bB£®b£¼c£¼aC£®c£¼a£¼bD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³Å©¿ÆËù·¢ÏÖ£¬Ò»ÖÖ×÷ÎïµÄÄêÊÕ»ñÁ¿ y£¨µ¥Î»£ºkg£©ÓëËü¡°Ïà½ü¡±×÷ÎïµÄÖêÊý x¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¨ËùνÁ½Öê×÷Îï¡°Ïà½ü¡±ÊÇÖ¸ËüÃǵÄÖ±Ïß¾àÀë²»³¬¹ý 1m£©£¬²¢·Ö±ð¼Ç¼ÁËÏà½ü×÷ÎïµÄÖêÊýΪ 1£¬2£¬3£¬5£¬6£¬7ʱ£¬¸Ã×÷ÎïµÄÄêÊÕ»ñÁ¿µÄÏà¹ØÊý¾ÝÈç±í£º
x123567
y605553464541
£¨1£©Çó¸Ã×÷ÎïµÄÄêÊÕ»ñÁ¿ y¹ØÓÚËü¡°Ïà½ü¡±×÷ÎïµÄÖêÊýxµÄÏßÐԻع鷽³Ì£»
£¨2£©Å©¿ÆËùÔÚÈçͼËùʾµÄÖ±½ÇÌÝÐεؿéµÄÿ¸ö¸ñµã£¨Ö¸×Ý¡¢ºáÖ±ÏߵĽ»²æµã£©´¦¶¼ÖÖÁËÒ»Öê¸Ã×÷ÎͼÖÐ
ÿ¸öСÕý·½Ðεı߳¤¾ùΪ 1£¬Èô´ÓÖ±½ÇÌÝÐεؿéµÄ±ß½çºÍÄÚ²¿¸÷Ëæ»úѡȡһÖê¸Ã×÷ÎÇóÕâÁ½Öê×÷Îï¡°Ïà
½ü¡±ÇÒÄê²úÁ¿½öÏà²î3kgµÄ¸ÅÂÊ£®
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À
¼Æ·Ö±ðΪ£¬$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$a=\overline y-b\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+y¡Ý2\\ x-y¡Ü2\\ y¡Ý1\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=x+2yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔÚ£¨1-x3£©£¨2+x£©6µÄÕ¹¿ªÊ½ÖУ¬x5µÄϵÊýÊÇ-228£®£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸