精英家教网 > 高中数学 > 题目详情
14.在(1-x3)(2+x)6的展开式中,x5的系数是-228.(用数字作答)

分析 利用二项展开式以及x5的得到的两种可能解答即可.

解答 解:(1-x3)(2+x)6的展开式中,x5的系数是2${C}_{6}^{5}-{2}^{4}{C}_{6}^{2}$=-228;
故答案为:-228.

点评 本题考查了二项式定理;熟记二项展开式的通项,利用项的由来是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知某蔬菜商店买进的土豆x(吨)与出售天数y(天)之间的关系如表所示:
x234567912
y12334568

(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立.
(I)求数列{an}的通项公式;
(II)若bn=$\left\{\begin{array}{l}{\frac{{a}_{n}+1}{{{a}_{n}}^{2}{{a}_{n+2}}^{2}},n为奇数}\\{\frac{1}{{{a}_{n}}^{2}},n为偶数}\end{array}\right.$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(Ⅰ)写出{an}的前3项,并猜想其通项公式;
(Ⅱ)若各项均为正数的等比数列{bn}满足b1=a1,b3=a3,求数列{n•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若从集合{1,2,3,4,5}中随机地选出三个元素,则满足其中两个元素的和等于第三个元素的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{{\begin{array}{l}{f({x+2}),x<3}\\{{{({\frac{1}{2}})}^x},x≥3}\end{array}}$,则f(-4)=(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x,y满足$\left\{\begin{array}{l}{y>0}\\{y≤x}\\{|x|+|y|≤1}\end{array}\right.$,则z=x+y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在二项式($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的展开式中,第四项的系数为$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${(2x-\frac{1}{2x})^{10}}$的常数项为(  )
A.-252B.252C.-210D.210

查看答案和解析>>

同步练习册答案