精英家教网 > 高中数学 > 题目详情
6.设x,y满足$\left\{\begin{array}{l}{y>0}\\{y≤x}\\{|x|+|y|≤1}\end{array}\right.$,则z=x+y的最大值为1.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由x,y满足$\left\{\begin{array}{l}{y>0}\\{y≤x}\\{|x|+|y|≤1}\end{array}\right.$,作出可行域如图:
化z=x+y为y=-x+z,
由图可知,当直线y=-x+z过A时,直线在y轴上的截距最大,由$\left\{\begin{array}{l}{x+y=1}\\{y=x}\end{array}\right.$,可得A($\frac{1}{2}$,$\frac{1}{2}$)时,
z有最大值为$\frac{1}{2}$+$\frac{1}{2}$=1.
故答案为:1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一种作物的年收获量 y(单位:kg)与它“相近”作物的株数 x具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 1m),并分别记录了相近作物的株数为 1,2,3,5,6,7时,该作物的年收获量的相关数据如表:
x123567
y605553464541
(1)求该作物的年收获量 y关于它“相近”作物的株数x的线性回归方程;
(2)农科所在如图所示的直角梯形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,图中
每个小正方形的边长均为 1,若从直角梯形地块的边界和内部各随机选取一株该作物,求这两株作物“相
近”且年产量仅相差3kg的概率.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估
计分别为,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知曲线y=x3在点(1,1)处的切线与直线ax+y+1=0垂直,则a的值是(  )
A.-1B.1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(1-x3)(2+x)6的展开式中,x5的系数是-228.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U={-1,0,2},集合A={-1,0},则∁UA={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=xex-ax2(a∈R).
(1)若函数g(x)=$\frac{f(x)}{{e}^{x}}$是奇函数,求实数a的值;
(2)若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点.
①求k与b的值;
②对(0,+∞)上的任意实数x1,x2,都有[f(x1)-h(x1)][f(x2)-h(x2)]>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若函数g(x)=f(x)-x有两个相异极值点x1、x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|
(I) 若对x∈[0,4]不等式f(x)≤3恒成立,求实数a的取值范围;
(II) 当a=2时,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C:y2=2px(p>0)的焦点F,准线l,点A为C上一点,以F为圆心,FA为半径作圆交l于B、D两点,∠BFD=120°,△ABD的面积为4$\sqrt{3}$,则p的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案