精英家教网 > 高中数学 > 题目详情
9.已知a=21.3,b=40.7,c=log38,则a,b,c的大小关系为(  )
A.a<c<bB.b<c<aC.c<a<bD.c<b<a

分析 利用c=log38<2<a=21.3<b=40.7=21.4,即可得出.

解答 解:∵c=log38<2<a=21.3<b=40.7=21.4
∴c<a<b.
故选:C.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为$\frac{π}{4}$.命题q:若函数f(x)=x+$\frac{4}{x},({x∈[{1,2}]})$,则f(x)的最小值为4.则下列命题为真命题的是(  )
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市政协课题组成员为了解中学生的身体素质情况,决定在该市高二的14400名男生和9600名女生中按分层抽样的方法抽取30名学生,对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余不参加体育锻炼),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),调查结果如表:
  A类B类 C类 
 男生5 x5
 女生y53
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
  男生女生 总计 
课余不参加体育锻炼   
课余参加体育锻炼   
 总计   
(3)从抽出的女生中再抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的均值(即数学期望).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,以双曲线C的实轴为直径的圆Ω与双曲线的渐近线在第一象限交于点P,若kFP=-$\frac{b}{a}$,则双曲线C的渐近线方程为(  )
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某蔬菜商店买进的土豆x(吨)与出售天数y(天)之间的关系如表所示:
x234567912
y12334568

(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a=({1,-3}),\overrightarrow b=({-2,6})$,若向量 $\overrightarrow c$与 $\overrightarrow a$的夹角为60°,且$\overrightarrow c•({\overrightarrow a+\overrightarrow b})=-10$,则$|{\overrightarrow c}|$=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,离心率$e=\frac{{\sqrt{2}}}{2}$,它的长轴长等于圆x2+y2-2x+4y-3=0的直径.
(1)求椭圆 C的方程;
(2)若过点$P({0,\frac{2}{3}})$的直线l交椭圆C于A,B两点,是否存在定点Q,使得以AB为直径的圆经过这个定点,若存在,求出定点Q的坐标;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“|x-1|+|x+2|≤5”是“-3≤x≤2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{{\begin{array}{l}{f({x+2}),x<3}\\{{{({\frac{1}{2}})}^x},x≥3}\end{array}}$,则f(-4)=(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案