精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系xOy中,直线l的参数方程为 $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直线l经过曲线C的左焦点F.
( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

分析 (I)曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,即ρ22sin2θ=4,利用互化公式可得直角坐标方程,可得作焦点F$(-\sqrt{2},0)$.直线l的参数方程为 $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数),消去参数t可得:x-y=m,把F代入可得:m.
(II)设椭圆C的内接矩形在第一象限的顶点为$(2cosθ,\sqrt{2}sinθ)$$(0<θ<\frac{π}{2})$.可得椭圆C的内接矩形的周长为L=8cosθ+4$\sqrt{2}$sinθ=4$\sqrt{6}$sin(θ+φ)(其中tanφ=$\sqrt{2}$).即可得出椭圆C的内接矩形的周长的最大值.

解答 解:(I)曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,即ρ22sin2θ=4,
可得直角坐标方程:x2+2y2=4,化为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
∴c=$\sqrt{4-2}$=$\sqrt{2}$,可得作焦点F$(-\sqrt{2},0)$.
直线l的参数方程为 $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数),消去参数t可得:x-y=m,
把$(-\sqrt{2},0)$代入可得:m=-$\sqrt{2}$.
∴直线l的普通方程为:x-y+$\sqrt{2}$=0.
(II)设椭圆C的内接矩形在第一象限的顶点为$(2cosθ,\sqrt{2}sinθ)$$(0<θ<\frac{π}{2})$.
∴椭圆C的内接矩形的周长为L=8cosθ+4$\sqrt{2}$sinθ=4$\sqrt{6}$sin(θ+φ)≤4$\sqrt{6}$(其中tanφ=$\sqrt{2}$).
∴椭圆C的内接矩形的周长的最大值为4$\sqrt{6}$.

点评 本题主要考查极坐标系与参数方程的相关知识、极坐标方程与平面直角坐标方程的互化、和差公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为N,过点F作直线与此抛物线交于A、B两点,若$\overrightarrow{NB}•\overrightarrow{AB}$=0,且|$\overrightarrow{AF}$|-|$\overrightarrow{BF}$|=4,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P为圆C:x2+y22内任意一点,则点P落在函数f(x)=sinx的图象与x轴围成的封闭区域内的概率为(  )
A.0B.1C.$\frac{2}{π^3}$D.$\frac{4}{π^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市政协课题组成员为了解中学生的身体素质情况,决定在该市高二的14400名男生和9600名女生中按分层抽样的方法抽取30名学生,对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余不参加体育锻炼),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),调查结果如表:
  A类B类 C类 
 男生5 x5
 女生y53
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为“课余不参加体育锻炼“与性别有关;
  男生女生 总计 
课余不参加体育锻炼   
课余参加体育锻炼   
 总计   
(3)从抽出的女生中再抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的均值(即数学期望).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,AB=3,AC=4.若△ABC的面积为$3\sqrt{3}$,则BC的长是$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,以双曲线C的实轴为直径的圆Ω与双曲线的渐近线在第一象限交于点P,若kFP=-$\frac{b}{a}$,则双曲线C的渐近线方程为(  )
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某蔬菜商店买进的土豆x(吨)与出售天数y(天)之间的关系如表所示:
x234567912
y12334568

(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$(其中$\widehatb$保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,离心率$e=\frac{{\sqrt{2}}}{2}$,它的长轴长等于圆x2+y2-2x+4y-3=0的直径.
(1)求椭圆 C的方程;
(2)若过点$P({0,\frac{2}{3}})$的直线l交椭圆C于A,B两点,是否存在定点Q,使得以AB为直径的圆经过这个定点,若存在,求出定点Q的坐标;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(Ⅰ)写出{an}的前3项,并猜想其通项公式;
(Ⅱ)若各项均为正数的等比数列{bn}满足b1=a1,b3=a3,求数列{n•bn}的前n项和Tn

查看答案和解析>>

同步练习册答案