精英家教网 > 高中数学 > 题目详情
15.抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为N,过点F作直线与此抛物线交于A、B两点,若$\overrightarrow{NB}•\overrightarrow{AB}$=0,且|$\overrightarrow{AF}$|-|$\overrightarrow{BF}$|=4,则p的值为(  )
A.2B.3C.4D.5

分析 假设k存在,设AB方程为:y=k(x-$\frac{p}{2}$),代入椭圆方程,可得根与系数的关系,由∠NBA=90°,可得|AF|-|BF|=(x2+$\frac{p}{2}$)-(x1+$\frac{p}{2}$)=2p,再利用焦点弦长公式即可求得p的值.

解答 解:抛物线y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),
设两交点为A(x2,y2),B(x1,y1),
假设k存在,设AB方程为:y=k(x-$\frac{p}{2}$),
$\left\{\begin{array}{l}{y=k(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,整理得k2x2-(k2+2)px+$\frac{{k}^{2}{p}^{2}}{4}$=0,
∵$\overrightarrow{NB}•\overrightarrow{AB}$=0,则∠NBA=90°,∴(x1-$\frac{p}{2}$)(x1+$\frac{p}{2}$)+y12=0,
∴x12+y12=$\frac{{p}^{2}}{4}$,
∴x12+2px1-$\frac{{p}^{2}}{4}$=0(x1>0),∴x1=$\frac{\sqrt{5}-2}{2}$p,
∵x1x2=$\frac{{p}^{2}}{4}$,
∴x2=$\frac{2+\sqrt{5}}{2}$,
∴|AF|-|BF|=(x2+$\frac{p}{2}$)-(x1+$\frac{p}{2}$)=2p,
即2p=4,则p=2,
故选A.

点评 本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x)
②函数f(x)有2个零点
③f(x)>0的解集为(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正确命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-a|+|x-3|.
(1)当a=3是,解不等式f(x)≥4+|x-3|-|x-1|;
(2)若不等式f(x)≤1+|x-3|的解集为[1,3],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0).
       求证:m+2n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了引导居民合理用水,居民生活用水实行二级阶梯水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)求频率分布直方图中字母a的值,并求该组的频率; 
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数m的值(保留两位小数); 
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是$\widehat{y}$=2x+33,若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},则N∩(∁IM)=(  )
A.{0}B.{-3,-4}C.{-1,-2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中真命题的个数是(  )
①已知m,n是两条不同直线,若m,n平行于同一平面α,则m与n平行;
②已知命题p:?x0∈R,使得x02-2x0+1<0,则¬p:?x∈R,都有x2-2x+1≥0;
③已知回归直线的斜率的估计值是3,样本点的中心为(1,2),则回归直线方程为$\stackrel{∧}{y}$=3x+1
④若x,y,z∈R,且xyz≠0,则命题“x,y,z成等比数列”是“y=$\sqrt{xz}$”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点为M,抛物线C2:y2=-2ax的焦点为F,若在曲线C1的渐近线上存在点P使得PM⊥PF,则双曲线C1离心率的取值范围是(  )
A.(1,2)B.$({1,\frac{{3\sqrt{2}}}{4}}]$C.(1,+∞)D.$({\frac{{3\sqrt{2}}}{4},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设由直线xsinα-ycosα-6=0(参数α∈R)为元素所构成的集合为T,若l1,l2,l3∈T,且l1,l2,l3为一个等腰直角三角形三边所在直线,且坐标原点在该直角三角形内部,则该等腰直角三角形的面积为36+24$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程为 $\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直线l经过曲线C的左焦点F.
( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

同步练习册答案