精英家教网 > 高中数学 > 题目详情
10.已知集合I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},则N∩(∁IM)=(  )
A.{0}B.{-3,-4}C.{-1,-2}D.

分析 先求出CIM={-3,-4},由此能求出(CIM)∩N.

解答 解:∵全集I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},
∴CIM={-3,-4},
∴(CIM)∩N={-3,-4}.
故选:B.

点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a,b,c分别是角A,B,C所对的边,若$\frac{cosC}{cosB}=\frac{2a-c}{b}$,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.仿照我国南宋数学杨辉所著的《详解九章算术》一书中的“杨辉三角形”,得到如下数表:

该数表由若干行数字组成,从第二行起,每一行中的数字均等于“肩上”两数之和,表中最后一行仅有一个数,则这个数为2017×22014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立.
(I)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.现有4张卡片,正面分别标有1,2,3,4,背面完全相同.将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽取一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为N,过点F作直线与此抛物线交于A、B两点,若$\overrightarrow{NB}•\overrightarrow{AB}$=0,且|$\overrightarrow{AF}$|-|$\overrightarrow{BF}$|=4,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,若cos∠AF2B=$\frac{3}{5}$,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn等差数列{an}的前n项之和,若S2014=2014a,S2015=2015b(a,b为常数),则S2016=2016(2b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,AB=3,AC=4.若△ABC的面积为$3\sqrt{3}$,则BC的长是$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

同步练习册答案