精英家教网 > 高中数学 > 题目详情
5.现有4张卡片,正面分别标有1,2,3,4,背面完全相同.将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽取一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{2}{3}$

分析 甲获胜是指甲第一次抽取偶数或甲第一次抽到奇数,同时乙第一次也抽到奇数,由此能求出甲获胜的概率.

解答 解:甲获胜是指甲第一次抽取偶数或甲第一次抽到奇数,同时乙第一次也抽到奇数,
∴甲获胜的概率是P=$\frac{2}{4}+\frac{2}{4}×\frac{1}{3}$=$\frac{2}{3}$.
故选:D.

点评 本题考查概率求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l与以定点M为圆心的动圆M也相切,当动圆M的面积最小时,证明:M、P两点的横坐标之差为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC三个内角A,B,C的对边,2b=$\sqrt{3}$asinB+bcosA,c=4.
(Ⅰ)求A;
(Ⅱ)若D是BC的中点,AD=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别是$a,b,c,\frac{asinA+bsinB-csinC}{sinBsinC}=\frac{{2\sqrt{3}}}{3}a$.
(1)求角C;
(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,∠BAC的平分线交BC边于D,若AB=2,AC=1,则△ABD面积的最大值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},则N∩(∁IM)=(  )
A.{0}B.{-3,-4}C.{-1,-2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设i是虚数单位,若复数$z=\frac{3+i}{1+i}$,则复数z的实部为(  )
A.1B.-1C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式$\frac{x+1}{x}$≤3的解集是(-∞,0)∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为(  )
A.B.12πC.20πD.24π

查看答案和解析>>

同步练习册答案