精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.已知G,E分别为A1B1,CC1的中点,D,F分别为线段AC,AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是( )
A.
B.
C.
D.
【答案】分析:根据直三棱柱中三条棱两两垂直,可建立空间直角坐标系,设出F、D的坐标,求出向量 ,利用GD⊥EF求得关系式,写出DF的表达式,然后利用二次函数求最值即可.
解答:解:建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),
G( ,0,1),F(x,0,0),D(0,y,0)

∵GD⊥EF,
∴x+2y-1=0,
∴x=1-2y
DF====
∵0<y<1
∴当y=时,线段DF长度的最小值是
又y=1时,线段DF长度的最大值是 1
而不包括端点,故y=1不能取;
故线段DF的长度的取值范围是:
故选A.
点评:本题的考点是点、线、面间的距离计算,主要考查棱柱的结构特征、空间直角坐标系等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案