【题目】已知双曲线C和椭圆1有公共的焦点,且离心率为.
(1)求双曲线C的方程;
(2)经过点M(2,1)作直线l交双曲线C于A、B两点,且M为AB的中点,求直线l的方程.
【答案】(1) x2﹣y2=1;(2) 2x﹣y﹣3=0.
【解析】
(1)由椭圆方程求得双曲线的半焦距,结合离心率求得实半轴长,再由隐含条件求得虚半轴长,则双曲线C的方程可求;
(2)设出A,B的坐标,利用“点差法”求得斜率,则直线l的方程可求.
(1)由椭圆1,得a2=3,b2=1,
∴c,则双曲线的半焦距c=2,
又其离心率为,则其实半轴长为1,虚半轴长为.
∴双曲线C的方程为x2﹣y2=1;
(2)由题意可知,直线l的斜率存在.
设A(x1,y1),B(x2,y2),
则,,
两式作差可得:(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),
得,
∵M(2,1)为AB的中点,∴,
∴直线l的方程为y﹣1=2(x﹣2),即2x﹣y﹣3=0.
科目:高中数学 来源: 题型:
【题目】近期,长沙市公交公司推出“湘行一卡通”扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 |
假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:
其中:,
参考公式:对于一组数据,,…,…,,其回归直线的斜率和截距的最小二乘估计公式分别为: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块半径为,圆心角为的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).
图1:方案一 图2:方案二
(1)求按照方案一截得的矩形钢板面积的最大值;
(2)若方案二中截得的矩形为正方形,求此正方形的面积;
(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,分别是椭园C:的左、右焦点,且椭圆C上的点到的距离的最小值为,点M,N是椭圆C上位于x轴上方的两点,且向量与向量平行.
求椭圆C的方程;
当时,求的面积;
当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线与椭圆C交于不同的两点,且点M到直线l的距离为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老况、老王、老顾、小周、小郭和两位王女士共7人要排成一排拍散伙纪念照.
(1)若两位王女士必须相邻,则共有多少种排队种数?
(2)若老王与老况不能相邻,则共有多少种排队种数?
(3)若两位王女士必须相邻,若老王与老况不能相邻,小郭与小周不能相邻,则共有多少种排队种数?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com