精英家教网 > 高中数学 > 题目详情
若F1,F2为椭圆的两个焦点,过F2的直线交椭圆于P,Q两点,PF1⊥PQ,且4|PF1|=3|PQ|,则椭圆的离心率为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:如图所示,设|QF2|=m,|PF2|=n,利用椭圆的定义可得|QF1|=2a-m,|PF1|=2a-n.由4|PF1|=3|PQ|,可得4(2a-n)=3(m+n).由PF1⊥PQ,利用勾股定理可得:(2a-n)2+n2=4c2,(2a-n)2+(m+n)2=(2a-m)2
联立解得即可.
解答: 解:如图所示,
设|QF2|=m,|PF2|=n,则|QF1|=2a-m,|PF1|=2a-n.
∵4|PF1|=3|PQ|,∴4(2a-n)=3(m+n),
∵PF1⊥PQ,
∴(2a-n)2+n2=4c2
(2a-n)2+(m+n)2=(2a-m)2
联立
4(2a-n)=3(n+m)
(2a-n)2+n2=4c2
(2a-n)2+(m+n)2=(2a-m)2
,化为n=a,代入可得a2=2c2
解得e=
2
2

故答案为:
2
2
点评:本题考查了椭圆的定义及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点M(-3,-3)的直线l与圆x2+y2+4y-21=0相交于A,B两点.设弦AB的中点为P,求动点P的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

简便运算:[(
0.25
2
2+
0.25
2
×0.275+
0.3
2
×0.275]×2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,准线过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点,且与双曲线实轴垂直,又抛物线与双曲线的一个交点为(3,2
6
)

(1)求抛物线与双曲线的方程.
(2)已知直线y=ax+1与双曲线交于A,B两点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学进入高二前,高一年的四次期中、期末测试的数学成绩的茎叶图如图所示,则该同学数学成绩的平均数是(  )
A、125B、126
C、127D、128

查看答案和解析>>

科目:高中数学 来源: 题型:

从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得到如图所示的频率分布直方图.
(1)求这500件产品质量指标值的样本平均数
.
x
和样本方差s2(同一组中的数据用该组区间的中点值作为代表);
(2)若该企业已经生产一批此产品10000件,根据直方图给出的数据做出估计,问这一批产品中测量结果在195-215之间的产品共有多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD被对角线BD和以A为圆心,AB为半径的圆弧
DB
分成三部分,绕AD旋转,所得旋转体的体积V1、V2、V3之比是(  )
A、2:1:1
B、1:2:1
C、1:1:1
D、2:2:1

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,EC⊥平面ABCD,CB=CD=CE.
(Ⅰ)求证:AC⊥平面CBE;
(Ⅱ)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞)且对一切x>0,y>0,都有f(
x
y
)=f(x)-f(y)
,当x>1时,总有f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性并证明;
(3)若f(4)=6,解不等式f(x-1)+f(x-2)≤3.

查看答案和解析>>

同步练习册答案