精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列满足,数列的前项和为,且满足.

(1)求数列的通项公式;

(2)数列满足,求数列的前项和.

【答案】(1);(2.

【解析】试题分析:(1)设等差数列{an}的公差为d,利用等差中项的性质及已知条件“a1+a2+a3=9、a2+a8=18”可得公差,进而可得数列{an}的通项;利用“bn+1=Sn+1﹣Sn”及“b1=2b1﹣2”,可得公比和首项,进而可得数列{bn}的通项;

(2)利用,利用错位相减法及等比数列的求和公式即得结论.

试题解析:

解:(1)设等差数列的公差为

,即

,即

,即

.

两式相减,得.

.

数列是首项和公比均为的等比数列, .

数列的通项公式分别为.

(2)由(1)知

两式相减,得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;(2)求函数上的最大值;

(3)求证:存在唯一的,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足Sn=a(Sn﹣an+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.
(1)求{an}的通项公式;
(2)设bn=anlog2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在Rt△AOB中,∠OAB= ,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B﹣AO﹣C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当VADOC:VABOC=1:2时,求CD与平面AOB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 为线段上的点.

(1)证明: 平面

(2)若的中点,求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.

(1)求抛物线的方程;

(2)过的直线交抛物线两点,且,点轴上一点,且,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y), ,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的单调性;

(2)是否存在实数,使得上的最大值为,若存在,求满足条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

同步练习册答案