【题目】已知等差数列
满足
,数列
的前
项和为
,且满足
.
(1)求数列
和
的通项公式;
(2)数列
满足
,求数列
的前
项和
.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足Sn=a(Sn﹣an+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.
(1)求{an}的通项公式;
(2)设bn=anlog2an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠OAB=
,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B﹣AO﹣C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当VA﹣DOC:VA﹣BOC=1:2时,求CD与平面AOB所成角的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
是抛物线
的焦点,
是抛物线
上的任意一点,当
位于第一象限内时,
外接圆的圆心到抛物线
准线的距离为
.
(1)求抛物线
的方程;
(2)过
的直线
交抛物线
于
两点,且
,点
为
轴上一点,且
,求点
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),
,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
,其中
为参数,
,再以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,其中
,
,直线
与曲线
交于
两点.
(1)求
的值;
(2)已知点
,且
,求直线
的普通方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com