精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为x2+y2=$\frac{4}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于-$\frac{1}{4}$,试探求△OMN的面积是否为定值,并说明理由.

分析 (Ⅰ)利用四边形A1B1A2B2为菱形,求出ab=2,圆心O到直线A2B2的距离为$\frac{2}{{\sqrt{5}}}$,列出方程,求出a,b,即可得到椭圆方程.
(Ⅱ)若直线MN的斜率存在,设直线MN的方程为y=kx+m,M(x1,y1),N(x2,y2),由$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+{y^2}=1}\end{array}}\right.$得:(1+4k2)x2+8mkx+4(m2-1)=0,利用韦达定理以及判别式,通过直线OM,ON的斜率之积等于$-\frac{1}{4}$,求出三角形的面积,若直线MN的斜率不存在,M,N关于x轴对称,设M(x1,y1),N(x1,-y1),求解三角形的面积即可.

解答 (本小题满分13分)
解:(Ⅰ)∵四边形A1B1A2B2的面积为4,又可知四边形A1B1A2B2为菱形,
∴$\frac{1}{2}×2a•2b=4$,即ab=2  ①
由题意可得直线A2B2方程为:$\frac{x}{a}+\frac{y}{b}=1$,即bx+ay-ab=0,
∵四边形A1B1A2B2内切圆方程为${x^2}+{y^2}=\frac{4}{5}$,
∴圆心O到直线A2B2的距离为$\frac{2}{{\sqrt{5}}}$,即$\frac{|-ab|}{{\sqrt{{a^2}+{b^2}}}}=\frac{2}{{\sqrt{5}}}$②…(3分)
由①②解得:a=2,b=1,
∴椭圆C的方程为:$\frac{x^2}{4}+{y^2}=1$…(5分)
(Ⅱ)若直线MN的斜率存在,设直线MN的方程为y=kx+m,M(x1,y1),N(x2,y2),
由$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+{y^2}=1}\end{array}}\right.$得:(1+4k2)x2+8mkx+4(m2-1)=0∵直线l与椭圆C相交于M,N两个不同的点,
∴△=64m2k2-16(1+4k2)(m2-1)>0得:1+4k2-m2>0③
由韦达定理:${x_1}+{x_2}=-\frac{8mk}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4({m^2}-1)}}{{1+4{k^2}}}$…(7分)
∵直线OM,ON的斜率之积等于$-\frac{1}{4}$,
∴$\frac{{{y_1}{y_2}}}{{{x_1}{x_2}}}=\frac{{(k{x_1}+m)(k{x_2}+m)}}{{{x_1}{x_2}}}=\frac{{km({x_1}+{x_2})+{k^2}{x_1}{x_2}+{m^2}}}{{{x_1}{x_2}}}=-\frac{1}{4}$,
∴$\frac{{km•(-8mk)+4{k^2}({m^2}-1)+{m^2}(1+4{k^2})}}{{4({m^2}-1)}}=\frac{{{m^2}-4{k^2}}}{{4({m^2}-1)}}=-\frac{1}{4}$,
∴2m2=4k2+1满足③…(9分)
∴${x_1}+{x_2}=-\frac{4k}{m},{x_1}{x_2}=2-\frac{2}{m^2}$,
又O到直线MN的距离为$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,$|MN|=\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\sqrt{1+{k^2}}\sqrt{\frac{{16{k^2}+8}}{m^2}-8}$,
所以△OMN的面积$S=\frac{1}{2}|MN|•d=\frac{1}{2}\sqrt{16{k^2}+8-8{m^2}}=\frac{1}{2}\sqrt{16{k^2}+8-4(4{k^2}+1)}=1$…(12分)
若直线MN的斜率不存在,M,N关于x轴对称
设M(x1,y1),N(x1,-y1),则$\frac{y_1}{x_1}•\frac{{-{y_1}}}{x_1}=-\frac{1}{4}$,${x_1}^2=4{y_1}^2$,
又∵M在椭圆上,$\frac{{{x_1}^2}}{4}+{y_1}^2=1$,∴$|{x_1}|=\sqrt{2},|{y_1}|=\frac{{\sqrt{2}}}{2}$,
所以△OMN的面积S=$\frac{1}{2}×2|{y}_{1}||{x}_{1}|$=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1.
综上可知,△OMN的面积为定值1.…(13分)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,三角形的面积的求法,点到直线的距离公式的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}为等比数列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an
(Ⅱ)若数列{bn}满足,bn+1=bn+an,b1=a2,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=|sinx|的周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且仅有一个点P满足PF1⊥PF2,则椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{3-\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的首项a1=1,前n项和为Sn,an+1=2Sn+1,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=log3an+1,求数列{$\frac{b_n}{a_n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴端点到右焦点F2(1,0)的距离为2,平行四边形ABCD的四个顶点都在椭圆G上.
(Ⅰ)求椭圆G的方程;
(Ⅱ)若直线AB和AD的斜率存在且分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)当直线AB和DC分别过椭圆G的左焦点F1和右焦点F2时,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若6x2+4y2+6xy=1,x,y∈R,则x2-y2的最大值为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设可导函数y=f(x)经过n(n∈N)次求导后所得结果为y=f(n)(x).如果函数g(x)=x3经过1次求导后所得结果为g(1)(x)=3x2.经过2次求导后所得结果为g(2)(x)=6x,….
(1)若f(x)=ln(2x+1),求f(2)(x).
(2)已知f(x)=p(x)•q(x),其中p(x)•q(x)为R上的可导函数.求证:f(n)(x)=$\sum_{i=0}^{n}$${C}_{n}^{i}$p(n-i)(x)•q(i)(x).

查看答案和解析>>

同步练习册答案