分析 (1)由an+1=2Sn+1,得an=2Sn-1+1(n≥2),两式相减得an+1=3an(n≥2),a2=2S1+1=2a1+1=3,满足$\frac{{a}_{2}}{{a}_{1}}$=3.利用等比数列的通项公式即可得出an.
(2)由(1)知an=3n-1,故bn=log3an+1=log33n=n,可得$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{3}^{n-1}}$.利用错位相减法即可得出.
解答 解:(1)由an+1=2Sn+1,
得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2(Sn-Sn-1)=2an,
故an+1=3an(n≥2),
所以当n≥2时,{an}是以3 为公比的等比数列.
因为a2=2S1+1=2a1+1=3,∴$\frac{{a}_{2}}{{a}_{1}}$=3.
所以{an}是首项为1,公比为3的等比数列,an=3n-1.
(2)证明:由(1)知an=3n-1,故bn=log3an+1=log33n=n,
∴$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{3}^{n-1}}$.
Tn=1+2×$\frac{1}{3}$+3×$(\frac{1}{3})^{2}$+4×$(\frac{1}{3})^{3}$+…+n×$(\frac{1}{3})^{n-1}$,①
$\frac{1}{3}$Tn=1×$\frac{1}{3}$+2×$(\frac{1}{3})^{2}$+3×$(\frac{1}{3})^{3}$+…+(n-1)×$(\frac{1}{3})^{n-1}$+n×$(\frac{1}{3})^{n}$.②
①-②,得$\frac{2}{3}$Tn=1+$\frac{1}{3}+(\frac{1}{3})^{2}$+…+$(\frac{1}{3})^{n-1}$-n×$(\frac{1}{3})^{n}$=$\frac{1-(\frac{1}{3})^{n}}{1-\frac{1}{3}}$-n×$(\frac{1}{3})^{n}$,
∴Tn=$\frac{9}{4}$-$\frac{2n+3}{4}×(\frac{1}{3})^{n-1}$.
点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {x|0<x<1} | C. | {x|x<0} | D. | {x|x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{6}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com